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1. Introduction

In the past decades, Monte Carlo event generators including QCD parton-shower routines,

such as Pythia [1 – 5], Herwig [6, 7], or Ariadne [8] have been very successful in correctly

describing, both qualitatively and quantitatively, a large range of QCD-related phenomena

at different colliders, at different energies, and with different initial states. The success

of these programs is based on good approximations in their treatment of logarithmically

enhanced emission of QCD particles in soft and/or collinear regions of phase space.

In conventional parton showers such as the ones in Pythia [9 – 11] or Herwig [12],

this is achieved by an expansion around the collinear limit. This manifests itself in the

ordering of subsequent emissions by virtual masses supplemented with an explicit veto on

increasing emission angles or by an ordering by emission angles, respectively.1 Alterna-

tively, perturbative QCD cascades can be formulated in terms of splitting colour dipoles

rather than partons. This has been realized in the shower algorithm in Ariadne [8], which

is based on the Colour Dipole Model (CDM) [15 – 17]. Splitting the dipoles and ordering

the emissions in relative transverse momenta of subsequent splittings is equivalent to an

expansion around the soft limits of the radiation process. In [15] it has been argued that

such a dipole shower quite naturally fulfils the requirements of quantum coherence, which,

for the parton showers, lead to angular ordering of subsequent emission, see e.g. [18]. It is

interesting to note that the Ariadne shower yields results, which show a similar or even

better agreement with data from electron-positron annihilation into hadrons [19 – 23]. How-

ever, in the CDM initial-state radiation (ISR), i.e. parton emission off incoming partons,

is not treated explicitly but taken into account by redefining ISR as final-state radiation

(FSR) off hadron remnants [24]. To correctly model ISR in this picture, non-perturbative

corrections have to be applied, cf. section 2. Equipped with such non-perturbative com-

ponents in its modelling of initial-state associated radiation, Ariadne also succeeded in

describing a wealth of DIS data in a very reassuring way, see for instance [25]. To some

extent, the reason for this excellent performance in describing e+e− and DIS data is not

entirely understood. The cause could be a better treatment of small-x effects in the DIS

case, which are assumed to be of importance for the forthcoming LHC too. Equally well,

it could be just the effect of a careful tuning of the additional non-perturbative parameters

in the case of DIS. Another idea is related to a supposedly improved simulation of single,

potentially non-global, potentially large logarithms stemming from soft corners of emission

phase space. This appears as a consequence of the fact that the leading 1/NC terms of

such contributions are better accounted for if the description of the radiation is based on

the dipole structure in both matrix element and phase space [26]. The blurred picture of,

1The current parton-shower implementation of Sherpa [13], Apacic++ [14], is very similar to the

well-established virtuality-ordered Pythia shower.
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on the one hand, delivering overwhelming agreement with data of various measurements

and, on the other hand, lacking clear determination of the reason for this success provides

a fair, but not the only motivation for trying out an alternative path in modelling ISR

arising from colour dipoles.

In view of the upcoming LHC era, Monte Carlo event generators are undergoing an

intensive overhaul, leading essentially to complete rewrites of the codes [27 – 30] or to

the construction of entirely new programs such as Sherpa [13] in the modern, object-

oriented programming language C++. Apart from issues related to maintenance, a number

of improvements concerning physics simulation motivated the construction of new event

generators. First of all, the shower algorithms themselves, forming an essential part of

the event generators, have been improved: in Pythia, a k⊥ ordered parton shower has

been introduced [4, 31] in order to better account for coherence effects. There is also a

dramatically extended model of multiple parton interactions. In Herwig, a new formula-

tion of angular ordering [32] better embeds Lorentz invariance and provides an improved

treatment of those regions, where the original Herwig shower over- or undercounted par-

ton emissions. In addition, a new parton-shower formulation has been developed based

on Catani-Seymour dipole factorization [33 – 36], and steps have been undertaken in the

development of yet another QCD shower formulation, which uses antenna functions [37].

For all these recent developments, a common denominator has been to put more emphasis

on the notion of a colour-connected partner of the splitting parton and thus a reduction

of the difference between parton and dipole showers. Especially, the showers based on

either Catani-Seymour [38, 39] or antenna subtraction kernels [40, 41], aim at an improved

matching with exact higher-order QCD matrix elements. In fact, considering the need for

increased precision, this systematic inclusion of higher orders in the perturbative expansion

of QCD has been a dramatic and recent improvement of the paradigm underlying building

and using multipurpose Monte Carlo event generators.

In the matching approach, the exact next-to-leading order matrix-element result is

consistently combined with the resummation of the parton shower [42 – 45] such that the

overall result correctly reproduces the corresponding NLO total cross section and the first

additional hard QCD emission. This has been first implemented for specific processes

in MC@NLO [46] on the basis of the Frixione-Kunszt-Signer subtraction [47]. This method

depends to some extent on the details of the parton shower and also has some residual

dependence on the process in question. With the POWHEG approach a shower-independent

matching solution [44, 45] extends the original MC@NLO proposal and the appearance of

negative weights, which are present in the former method, can be circumvented.

In alternative approaches, sequences of tree-level multileg matrix elements with in-

creasing final-state multiplicity are merged with the parton shower to yield fully inclusive

samples correct at leading logarithmic accuracy by avoiding double-counting and missing

phase-space regions. A first approach, known as the CKKW merging approach, has been

presented for the case of electron-positron annihilations into jets in [48]; later it has been

extended to hadronic collisions [49] and it has been reformulated to a merging procedure —

called LCKKW — in conjunction with a dipole shower [50]. A further method, the MLM

method, has been developed, which also aims at a merging of matrix elements and parton
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showers. It uses a different way in generating the inclusive samples based on a geometric

interpretation of the full radiation pattern in terms of cone jets [51, 52]. All these different

algorithms have been implemented in different variations on different levels of sophistica-

tion in conjunction with various matrix-element generators or already in full-fledged event

generators, see e.g. [13, 53 – 63]. Despite their differences they exhibit an assuring level of

agreement [64].

In all these new approaches, parton emissions from matrix elements at a given pertur-

bative order have to be balanced with corresponding emissions from a shower algorithm.

Intuitively one may anticipate that dipole-like kinematics, leaving all particles of the split-

ting on their mass shells, may facilitate simpler procedures for this balancing. Furthermore,

concerning matching, the CDM seems to be the more natural partner to the matrix-element

part of calculations based on a subtraction method using antenna factorization [40].

In this publication, therefore, an extension of the “perturbative” dipole shower [16]

as implemented in Ariadne [8] to truly perturbative initial-state radiation is proposed,

in contrast to the original ISR Lund CDM. Hence, the goal is to formulate the QCD

evolution of a hard process initiated through a hadronic collision entirely perturbatively

as a sequence of colour-dipole emissions. In particular, emissions associated to the initial

state are treated as to directly emerge from colour dipoles spanned by the external parton

lines. The beam remnants are kept completely outside the perturbative evolution, their

connection to the evolved cascade is left to the hadronization to deal with. As a direct

consequence, three types of dipoles and, hence, of associated radiation contribute to the

full development of the final cascade, namely emissions from initial-initial (II), final-initial

(FI), and final-final (FF) dipoles. Consequently, the emissions are denoted as initial-, final-

initial- and final-state radiation (ISR, FISR, FSR), respectively. In order to model ISR and

FISR in the fully perturbative version of the CDM proposed here, a backward evolution

of the initial-state related radiation pattern of the shower is mandatory and automatically

necessitates the inclusion of parton distribution functions (PDFs).

The outline of the paper is as follows: in section 2 the basics of the dipole-shower model

as implemented in Ariadne will briefly be introduced. In addition, the treatment of ISR

through final-state dipole splittings involving the beam remnants will be discussed. In the

next section, section 3, the basic ideas of the newly proposed dipole shower are highlighted,

especially the different ansatz for ISR simulation. This includes the generalization of the

kinematical framework and of the evolution variables. In the following three sections, the

kinematics and single-emission cross sections of all dipole splittings in various configura-

tions of initial- and final-state partons will be detailed, recapitulating the case of dipoles

consisting of final-state partons only, the case implemented in Ariadne, in section 4. The

kinematics and splitting functions of the new dipole types present in this model are dis-

cussed in sections 5 and 6. The complete shower algorithm will be presented in section 7

and its performance for various physics processes will be highlighted in section 8.

2. The colour dipole model

2.1 Physical background of the CDM

The Lund colour dipole model (CDM) has strong connections to the semiclassical method
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of virtual quanta [65 – 67], which equates the electromagnetic energy flux associated with

the fields emitted by fast moving charges with an energy flux of equivalent photons. Owing

to the large Lorentz boosts of the charged emitter, the corresponding electric and magnetic

fields are orthogonal to each other and they populate a plane orthogonal to the direction

of motion of the emitter only. This amounts to a pulse of electromagnetic energy, given by

dI(ω, b) ≃ ~αdω
2π b db

π2
, (2.1)

where b denotes the impact parameter, i.e. the distance w.r.t. the emitter; ω is the frequency

of the field component. It is bound from above by ω < p/mb, where p and m are the

momentum and mass of the emitter, respectively. Equating this energy pulse I with a

number of equivalent quanta n,

dI = ~ ω dω , (2.2)

and replacing the impact parameter with transverse momentum yields

dn ≃ α

π

dk2
⊥

k2
⊥

dω

ω
. (2.3)

A similar result emerges when considering bremsstrahlung off a charged particle, chang-

ing its otherwise straight direction of motion through a sudden “kick”, or connected with

the pair production of charged particles. Then, in the Breit-frame of the former process,

or in the centre-of-mass frame of the latter, a rapidity y can be defined w.r.t. the axis of

motion of the charged particle(s). A short calculation based on a full quantum-mechanical

treatment shows that, neglecting spin effects, the number of bremsstrahlung-photons is

well approximated by

dn =
2α

π

dω

ω
dy , (2.4)

cf. [68]. Here, the rapidity must satisfy

|y| < |y0| , (2.5)

and y0 is the rapidity of the emitter(s). Rewriting energy through transverse momentum,

k⊥ =
ω

cosh y
, (2.6)

then leads to

dn =
α

π

dk2
⊥

k2
⊥

dy . (2.7)

Because of its equivalence to eq. (2.4), this equation exhibits the dominance of soft radiation

in the semi-classical limit. In this context it is worth to note that the same limit is

used in eikonal-type factorization of matrix elements employed, e.g. in antenna subtraction

methods [40, 69] for the calculation of perturbative higher-order corrections to scattering

cross sections in QCD.

The simple formula for the semi-classical limit of photon radiation off a charged dipole,

eq. (2.7), can be refined through a full quantum-mechanical treatment, including spin
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effects, see also later sections. However, the dominant features of the radiation pattern are

already fixed by the simple formula, which in turn denotes the starting point for a shower

simulation based on individual dipole emissions. The differential probability for such an

emission to occur in an interval dp2
⊥ and dy is related to dP = dσ/dσ0 given by

dP ≃ αs

π

dp2
⊥

p2
⊥

dy . (2.8)

Here p⊥ denotes a transverse momentum, which in the CDM is constructed out of Lorentz

invariant quantities. Numbering the momenta of the particles after emission such that the

newly emitted particle is labelled with “2”, and, denoting the momenta before and after

the emission with p̃i and pi, respectively, the emission can be symbolized as

p̃1 + p̃3 = p1 + p2 + p3 . (2.9)

The squared invariant masses of sets of momenta are denoted as

sij... = (pi + pj + · · · )2 and s̃ij... = (p̃i + p̃j + · · · )2 . (2.10)

A Lorentz invariant transverse momentum can be defined as

p2
⊥ =

s12 s23

s123
=

s12 s23

s̃13
, (2.11)

in agreement with [16, 68] and the Ariadne implementation. Moreover, a rapidity can

then be computed through

y =
1

2
ln

s12

s23
. (2.12)

The Lorentz invariant choice guarantees a frame-independent description of the dipole

splitting process. Using p⊥ as the ordering parameter for subsequent emissions, a Sudakov

form factor encodes the non-emission probability between two scales p2
⊥,high and p2

⊥,low in

analogy to conventional parton showers:

∆(p2
⊥,high, p

2
⊥,low) = exp















−
p2
⊥,high
∫

p2
⊥,low

dp2
⊥

y+(p⊥)
∫

y−(p⊥)

dy
dP

dp2
⊥dy















. (2.13)

In this form, the leading logarithms are resummed to all orders.

The Sudakov form factor constitutes the basis of the simulation of parton emissions

also in the framework of the CDM. In contrast to ordinary parton showers, however, here

the relevant objects are colour dipoles, which emerge naturally when considering the large

NC limit. In this limit, colour charges in the fundamental representation (quarks and anti-

quarks) have one colour partner, and colour charges in the adjoint representation (gluons)

have two colour partners. The dipoles are built from pairs of such colour partners, and the

emission of a gluon off a dipole effectively amounts to splitting the dipole into two.

This self-similar process of dipole splitting, which is described in a probabilistic fashion,

is easily encoded as a Markovian process in form of a computer program. Adding in

the leading logarithmic behaviour and colour coherence as a dominant feature of QCD

emissions results in a strict ordering of subsequent emissions such that the actual p⊥ of a

dipole splitting sets the maximal p⊥ for the splittings of the two resulting dipoles.
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2.2 Initial-state radiation in the original CDM

In Ariadne, the only complete CDM implementation so far, initial-state radiation off

incoming partons is not explicitly taken into account. Instead, ISR is redefined as FSR,

where dipoles are spanned between potential final-state partons and the outgoing hadron

remnants [24, 70 – 72]. Considering DIS of leptons on hadrons, it can be argued that, as

the hadron is in a bound state, all radiation originates from the colour dipole between the

struck point-like quark and the hadron remnant — being an extended object composed of

individual valence quarks and sea partons. Thus, an extended “antenna” is formed and

from the electro-magnetic (semi-classical) analogy it follows that radiation of wavelengths

smaller than the extension of the antenna is suppressed. Therefore, the original CDM was

modified such that only a p⊥-dependent fraction a(p⊥) of the remnant enters the splitting

process [24]:

a(p⊥) =

(

µ

p⊥

)α

, (2.14)

where µ parametrizes the inverse size of the remnant and α refers to the dimensional-

ity of the emitter, both being parameters to be tuned to data. In e+e− annihilation the

(“triangle”) phase-space boundaries are approximated by |y| < ln(M/p⊥), which now are

supplemented by the extra condition y < ln(Mµ/p2
⊥). This obviously limits the range of

accessible p⊥ values in the splitting of the dipole of mass M . The strategy of sharing the

recoil in such cases was inspired by the Lund string model, where an extra kink on the

string (hadron) is interpreted as an extra gluon. This led to the introduction of recoil glu-

ons to compensate for the recoil momentum associated with the part of the hadron, which

participates in the emission.2 Moreover, in cases where a sea quark is hit, the picture expe-

riences further minor modifications. Taken together, a good fraction of phenomenological,

non-perturbative modelling enters the Lund CDM for ISR through all these assumptions.

Next, consider Drell-Yan-like processes; there, a quark-antiquark pair annihilates to

produce a lepton pair. In conventional parton showers, the two incoming quarks would emit

secondary partons, typically simulated in a backward evolution algorithm [9, 12]. The recoil

of these emissions is transferred to colour partners and the final-state leptons. In contrast,

in Ariadne the incoming quarks do not radiate but rather the two beam remnants, which

are the only two coloured final-state objects before radiation (cf. left panel in figure 1).

Then, the recoil of the first emission is compensated for by the final-state leptons [72, 55],

for all further dipole emissions, additional recoil gluons are added, if the emission occurred

in phase space significantly away from the vector boson [72]. A further obvious refinement

is the correction of the first emission to the corresponding matrix-element expression. The

sharp phase-space cut-off is then replaced by a softer suppression function, in order to

describe the high transverse-momentum spectrum of the vector boson.

3. New approach to initial-state radiation using colour dipoles

The principles underlying the proposal of this paper for the construction of a purely per-

2For the Ariadne rewrite in C++, the possibility of discarding recoil gluons completely is under consid-

eration.
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turbative colour-dipole model are:

• the maintenance of the probabilistic interpretation of emissions as encoded in the

Sudakov form factor, which will be obtained from exponentiating single-emission

differential cross sections;

• the large NC limit of the radiation pattern, and the restriction to account for the

leading terms only, i.e. the leading dipoles, of this expansion;

• the generalization of the emission kinematics and evolution variables, which have

been used in the original CDM and in Ariadne, to the case of ISR and FISR;

• the factorization of the emission phase space and matrix elements around the soft

limit (the radiation pattern has to be factorized in terms of 2 → 3 splittings, to be

derived for II and FI dipoles);

• the utilization of crossing symmetries for the determination of dipole splitting func-

tions;

• the construction of on-shell kinematics for each splitting on an emission-by-emission

basis, which allows stop and restart the cascading after any individual emission;

• the backward evolution description of radiation related to incoming partons, and,

consequently, the emergence of PDFs in the shower algorithm in a way similar to

conventional parton showers.

A number of issues are not at all covered here, which are, however, straightforward to

include in some future work, namely

• the comparison of different forms of splitting cross sections;

• the approach’s extension to account for finite, non-zero quark masses (in this work,

all partons are treated as massless);

• an extension to Supersymmetry;

• the QED radiation off the dipoles.

To exemplify the impact of the principles outlined above, consider Drell-Yan processes;

in contrast to the Lund approach, see section 2.2, in the new dipole picture the primary

dipole q̄iq
′
i is directly formed by the two incoming quarks, and the emission will be calculated

from the competition between gluon (see figure 1), quark and antiquark bremsstrahlung.

The real-emission matrix-element information will directly enter, through the correspond-

ing dipole splitting functions, as in the FF counterpart of emitting a first gluon off a qq̄′

dipole. The boson’s transverse momentum will be naturally generated, because the new

initial-state momenta will be oriented along the beam direction. In case of an actual gluon

emission, a system of two colour-connected successor FI dipoles emerges, namely a q̄igf

and a gfq
′
i dipole. A further gluon radiated into the final state will then create a first

– 8 –
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Figure 1: The Lund CDM approach to initial-state radiation in Drell-Yan processes (left panel)

vs. the direct, perturbative approach as suggested by the new dipole-shower model (right panel).

The treatment in modelling a first gluon emission is illustrated.

Figure 2: Modelling a second emission — here a gluon emission emerging off the successor II

dipole giq
′
i , which has been created after radiating a quark in first place. This gluon emission is

depicted in the same simplified manner as the one of figure 1.

FF dipole. The other circumstance of producing a quark first generates an FI dipole qfgi

and a successor II dipole giq
′
i (see figure 2) with again a dual rôle played by the gluon,

here gi. Hence, the QCD evolution of the leading-order Drell-Yan pair production process

eventually will involve all possible dipole types.

In the new dipole-shower model the calculation of ISR and FISR is accomplished by

a backward-evolution method. This is in contrast to the Lund CDM, yet very similar to

the treatment of ISR in conventional parton showers. The factorization scale is succes-

sively reduced by unfolding emissions associated to the initial state until their energies

are sufficiently low for hadronization to set in. On the one hand, in high-pT collisions,

leading logarithmic effects are accounted for in this way and soft physics is factorized off

entailing small corrections only. On the other hand, this model — as well as conventional

parton showers — are not intended and therefore do not describe effects related to soft

radiation off the colour-charged remnants and their hadronization. This is also true for

effects that are beyond factorization, consider, for example, multiple interactions. Clearly,
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QCD dipoles, k̃ ℓ̃

II dipoles, ı̄′ i FI dipoles, f i FF dipoles, f f̄ ′

q̄′iqi qfq
′
i qf q̄

′
f

giqi qfgi qfgf

gigi gfgi gfgf

Table 1: All dipole types appearing in QCD (the supplemental indices i or f label whether the

parton is in the initial or final state, respectively; if clear from the context, the index f will be left

out). The primes indicate that different quark flavours may constitute the dipole.

in such cases shower models have to be supplemented by models specifically dealing with

these issues, which can be expected to become relevant in forward-physics processes and

diffractive collisions. It hence can be anticipated that a comparison of predictions of the

new dipole shower with DIS data from HERA will help reliably estimate the applicability

of the proposed model beyond leading logarithmic accuracy in high-pT collisions.

3.1 Kinematic framework

The occurrence of new dipoles and corresponding splittings is an immediate consequence

of the suggested new CDM approach. A list summarizing the principal dipoles of QCD

is shown in table 1. Dipoles are labelled by k̃ℓ̃, thus, in the most general way a splitting

triggered by the emission of a (new) gluon g is expressed as

k̃ ℓ̃ → k g ℓ . (3.1)

The notation is chosen such that the flavour and colour flows of all particles are outgoing.

Three types of gluon emission emerge, related by crossing symmetry; any such splitting

will leave the number of initial-state partons constant:

k̃ ℓ̃ →











k̃ gf ℓ̃ : gluon emission ,

q gi ℓ̃ : quark emission, provided that k̃ = q̄i ,

k̃ gi q̄ : antiquark emission, provided that ℓ̃ = qi .

(3.2)

Here, the subscripts indicate whether the gluon emerges in the initial or final state. In the

former case, this requires to replace the initial (anti)quark of the original dipole by the

initial gluon and emit the corresponding antiquark (quark) in the final state.

Having clarified the notations used for the dipoles and their splittings, the kinematic

objects will be introduced. First of all, the momenta are defined as incoming/outgoing if

they are associated with the physical initial/final state. Those before and after the emission

are denoted by p̃m̃ and pm, respectively, such that, expressed through the momenta alone

the dipole splitting process can be written as

ς̃k̃ p̃k̃ + ς̃ℓ̃ p̃ℓ̃ −→ ςk pk + ςg pg + ςℓ pℓ . (3.3)

– 10 –
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Here and in the following the signature factors ς̃m̃ = ±1 and ςm = ±1 for partons in the final

(+) and initial (−) state. The before- and after-emission total momenta p̃0 and p0 then read

−ς0 p̃0 = ς̃k̃ p̃k̃ + ς̃ℓ̃ p̃ℓ̃ , (3.4)

−ς0 p0 = ςk pk + ςg pg + ςℓ pℓ , (3.5)

with the requirement that p̃2
0 = p2

0. Furthermore ς̃0 ≡ ς0, and the signature factor ς0, i.e. the

association of the total momenta with the initial or final state is chosen such that the after-

emission configuration refers to a production (ς0 = −1, FF dipoles), scattering (ς0 = −1, FI

dipoles), or annihilation (ς0 = 1, II dipoles) process. Consequently, the four-vector p̃0 then

corresponds to the four-momentum of the decaying parent dipole having mass |M | such that

p̃2
0 = M2 ≡ −Q2 = p2

0 , (3.6)

with Q2 arranged to be positive definite for FI dipole emissions. Accordingly, Lorentz

invariant energy fractions w.r.t. p0 are defined through3

xm =
2 pmp0

p2
0

. (3.7)

The squared invariant masses of two- and three-parton systems are denoted by

smn = (ςm pm + ςn pn)2 and smnr = (ςm pm + ςn pn + ςr pr)
2 (3.8)

where the inclusion of p0 and the expressions related to the momenta before the emission

are understood. Concerning all gluon emissions considered here, the identity

M2 = skg + sgℓ + skℓ = skgℓ = −Q2 (3.9)

holds true in general, since all partons are consistently treated as massless.

3.2 Towards generalized evolution variables

Next, the dipole evolution variables have to be generalized such that all emissions of all

dipole types can be treated on equal footing and embedded in a consistent CDM-like evo-

lution. The generalized variables should have the property of leaving the well-established

FSR treatment unchanged and they should satisfy the constraint that all splitting cross

sections, i.e. those involving initial-state partons as well, will follow the approximate form

given in eq. (2.8). This would just manifest the universal features of QCD radiation in the

soft limit, reproduced by eikonal distributions factorizing off the squared matrix elements

in emissions off initial and final states alike,

−1

2

(

pk

pkpg
− pℓ

pgpℓ

)2

=
2 skℓ

skg sgℓ
. (3.10)

3The notion “energy fraction” is clear in the centre-of-mass frame of a parent FF dipole, where xm =

2Em/M .
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Note that the right-hand side of this equation explicitly assumes massless partons. Fol-

lowing eq. (2.11), the factor 2/p2
⊥ becomes identical to the eikonal factor in the soft limit,

and the collinear limits manifest themselves in the two-parton squared masses appearing

in this p2
⊥ definition. Then, the generalized kinematic variables should exhibit the same

singular behaviour in the soft/collinear limits for all dipole types, reflecting the crossing

symmetry. Therefore, in this paper a generalized transverse momentum and rapidity are

proposed in the form

p2
⊥ =

∣

∣

∣

∣

skg sgℓ

skgℓ

∣

∣

∣

∣

, (3.11)

and

y =
1

2
ln

∣

∣

∣

∣

sgℓ

skg

∣

∣

∣

∣

. (3.12)

Here, the invariant masses smn(r) are calculated including the signature factors ςm,n,r, i.e.

through eqs. (3.8). Clearly, for FF dipole cascading, all invariant masses are positive and

hence the original CDM evolution variables of eqs. (2.11) and (2.12) are trivially recovered.

For the other cases, the generalized form suggested here is a minimal Lorentz invariant

extension, guaranteeing a frame-independent evolution of the colour dipole. Moreover,

these shower variables allow a global simultaneous ordering of all emissions. Given these

generalized definitions, the identities

|skg| = |M | p⊥e−y and |sgℓ| = |M | p⊥e+y (3.13)

are found, indeed showing the similarity to the original Lund CDM.

Having introduced the kinematic framework, in the following sections, sections 4, 5

and 6, the derivation of the splitting kinematics for each dipole type (FF, II, and FI/IF)

will be always pursued in four steps:

• First, the evolution variables p⊥ and y are identified.

• Then, the limits of the emission phase space are deduced, which for the rapidity

typically read y− ≤ y ≤ y+. They guarantee that the evolution takes place within

the physical region of phase space. These limitations are imposed through constraints

on the evolution variables and, thus, determine the Sudakov form factor, see eq. (2.13)

and section 7.

• Together with the strict limits, approximate ones are stated, denoted e.g. for the

rapidity by Y− ≤ y ≤ Y+, which allow an analytical evaluation of approximate

Sudakov form factors. They are used in a Monte Carlo procedure, which finally

corrects for the true form of the exact Sudakov form factors by means of a veto

algorithm, see e.g. [3].

• The on-shell three-parton kinematics of the splittings characterized by the central

variables p⊥ and y are constructed from the original two-parton configurations. Re-

maining degrees of freedom are fixed with a few additional assumptions, i.e. through

four-momentum conservation and a splitting-specific recoil strategy. The Lorentz

invariant definition of the evolution variables guarantees the frame-independence of

the actual construction.
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3.3 Dipole splitting cross sections and functions for QCD radiation

In order to construct a parton shower as a Markovian process, the emission of any ad-

ditional parton has to be factorized from the radiation of partons produced so far, such

that the full radiation pattern can be built as a sequence of individual, mostly independent

emissions. For the actual construction of a dipole shower, the individual parton emission

should be modelled as being coherently shared between the two partons forming the dipole.

The asymptotic form of these 2 → 3 dipole splitting cross sections has been presented in

section 2, cf. eq. (2.8), which constitutes the limiting case of soft emissions. In order to

extrapolate to harder regions of emission phase space and to include spin effects, the dif-

ferential cross section for a k̃ℓ̃ dipole developing into a kgℓ colour-connected state is more

conveniently written as

dPk̃ℓ̃→kgℓ ≡ dσ0→kgℓ

dσ0→k̃ℓ̃

=
αs

2π
Dk̃ℓ̃→kgℓ(p⊥, y)

dp2
⊥

p2
⊥

dy . (3.14)

This defines the dipole splitting function Dk̃ℓ̃→kgℓ in analogy to the splitting kernels em-

ployed in conventional parton showers. In both cases, the splitting kernels of dipole or

parton showers incorporate refinements, which go beyond the corresponding eikonal or

collinear approximation, respectively. Here, the Dk̃ℓ̃→kgℓ may be deduced by analyzing

differential cross sections for additional real emission of partons in comparison to the

corresponding Born level processes. This then yields the single-dipole phase-space and

matrix-element factorization, which has to work at least in the singular domains of the

real-emission phase space. Accordingly, first-order real corrections are fully or partially

encoded in the splitting kernels automatically.

For the timelike case, the reasoning outlined above is realized by starting from the

three-body decay rate of an object with mass M ,

dΓ0→fgf̄ ′ =
(2π)4

2M
|M0→fgf̄ ′ |2 dΦ0→fgf̄ ′(p0; pf , pg, pf̄ ′) , (3.15)

where, in the massless limit, the dipole phase space and matrix element factorize according

to

dΦ0→fgf̄ ′(p0; pf , pg, pf̄ ′) = dΦ0→ff̄ ′(p̃0 = p0; p̃f , p̃f̄ ′)
dsfg dsgf̄ ′

16π2 M2

dϕ

2π
(3.16)

and

|M0→fgf̄ ′ |2 ≃ 8παs C D̂ff̄ ′→fgf̄ ′ |M0→ff̄ ′ |2 , (3.17)

respectively. For example, the Feynman diagrams that are relevant for the calculation of

M0→qgq̄′ are shown in figure 3. In the equation above the colour factor has been introduced

explicitly and is labelled by C. Employing NC = 3 for the number of colours, it typically

takes one of the following values, C = CF =
N2

C
−1

2NC
= 4

3 for gluons emitted off quarks,

C = CA = NC = 3 for gluons emitted off gluons, or C = TR = 1
2 for gluon splittings into

quark-antiquark pairs. D̂ denotes the dipole matrix element, which by definition correctly

reproduces the singular terms of the parton emission process with potential differences in

finite terms. Therefore, dΓ0→fgf̄ ′ can be expressed as

dΓ0→fgf̄ ′ ≃ dΓ0→ff̄ ′

Cαs

2π
D̂ff̄ ′→fgf̄ ′(p⊥, y, ϕ) dp2

⊥dy
dϕ

2π
(3.18)
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Figure 3: The Feynman diagrams that determine the calculation of the emission matrix element

M0→fgf̄ ′ when quark-antiquark dipoles are considered, f = q and f̄ ′ = q̄′.

with p⊥ and y taken from eqs. (3.11) and (3.12). In most cases, the dependence of D̂ on

the azimuthal angle ϕ is neglected, thus, integrated out, such that the connection of the

dipole splitting functions to the dipole matrix elements in the FF case reads

Dff̄ ′→fgf̄ ′(p⊥, y) = ξ C p2
⊥ D̂ff̄ ′→fgf̄ ′(p⊥, y) . (3.19)

Note that here a gluon-sharing factor ξ has been introduced because each gluon is contained

by two dipoles.

For the class of II dipoles, i.e. those consisting of colour-connected incoming partons,

the extraction of dipole splitting cross sections has to be accomplished on the level of

hadronic cross sections to correctly account for PDF effects and possible phase-space (sup-

pression) factors. In this case, a 2 → 2 scattering process rather than an 1 → 3 decay has

to be considered. The differential cross section (using massless partons and having already

integrated out the ϕ dependence) reads

dσı̄′i(gi)→0g(0q) = fı̄′(g)(x±, µF) fi(x∓, µF)
1

S

|Mı̄′i(gi)→0g(0q)|2
16πŝ2

dŝ dt̂ dycm , (3.20)

where the usual 2 → 2 process Mandelstam variables ŝ = sı̄′i(gii) and t̂ = sı̄′g(qgi) have

been employed. Note that the quark emission case is signified by the parentheses. The

fk(x±, µF) are the PDFs. At leading order they can be interpreted as the probability

of resolving a parton k inside the nucleon with light-cone momentum fraction x taken

w.r.t. the nucleon’s momentum; µF names the factorization scale (defined in energy units),

at which, pictorially speaking, the partonic substructure is probed. S and ycm denote the

centre-of-mass energy and rapidity of the collider system, respectively. The 2 → 1 hadronic

differential Born cross section for creating a particle of mass M through the matrix element

Mı̄′i(q̄i)→0 characterizes the ı̄′i dipole’s situation before the emission. Then, similarly to

the FF case, the 2 → 2 matrix element squared can be cast into a factorized form, reading

|Mı̄′i(gi)→0g(0q)|2 ≃ 8παs C D̂ı̄′i(q̄ii)→ı̄′gi(qgii) |Mı̄′i(q̄i)→0|2 . (3.21)

As an example, figure 4 depicts the contributing Feynman diagrams to calculate the matrix

elements for Drell-Yan plus extra parton emission: Mq̄′q→0g (left panel) and Mgq′→0q (right

– 14 –
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0 q
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Figure 4: Left panel: Feynman diagrams for calculating the emission matrix element Mı̄′i→0g

when an initial antiquark-quark dipole is considered to emit a gluon, i = q and ı̄′ = q̄′. Right panel:

Feynman graphs used to evaluate the emission matrix element Mgi→0q when an initial q̄iq
′
i dipole

is considered emitting a quark (i = q′).

panel). The 2 → 2 differential scattering cross section can hence be written in terms of the

2 → 1 Born term dσı̄′i(q̄i)→0 where the tilde variables refer to the Born configuration:

dσı̄′i(gi)→0g(0q) ≃ dσı̄′i(q̄i)→0

(

dycm

dỹcm

)

fı̄′(g)(x±, µF) fi(x∓, µF)

fı̄′(q̄)(x̃±, µ̃F) fi(x̃∓, µ̃F)

M4

ŝ2(p⊥, y)

× Cαs

2π
D̂ı̄′i(q̄ii)→ı̄′gi(qgii)(p⊥, y) dp2

⊥dy .

(3.22)

In contrast to the FF case, there is some additional freedom in arranging the actual recoils,

since in principle the total energy of the splitting parton system will increase with each

emission — additional momentum can be taken off the incoming nucleons. However, fixing

the new centre-of-mass rapidity ycm removes this ambiguity. The choice in this paper is

to ensure constant rapidity derivatives, thus, to set up a recoil handling, which eventually

shifts the original ỹcm through some function ŷ that exclusively depends on the variables

associated to the emission,

ycm = ỹcm + ŷ(M2, ŝ, t̂) . (3.23)

Provided that these requirements can be satisfied, the II dipole splitting functions

finally read

Dı̄′i(q̄ii)→ı̄′gi(qgii)(p⊥, y) =
fı̄′(g)(x±, µF) fi(x∓, µF)

fı̄′(q̄)(x̃±, µ̃F) fi(x̃∓, µ̃F)

M4 ξ C p2
⊥

ŝ2(p⊥, y)
D̂ı̄′i(q̄ii)→ı̄′gi(qgii)(p⊥, y)

(3.24)

and can be used to specify the associated differential splitting cross sections. In comparison

to the gluon emission processes of FF dipoles, cf. eq. (3.19), additional terms arise in each of

the II dipole functions, namely a PDF weight, WPDF, which contains a ratio of PDFs taken

at the respective momentum fractions and factorization scales before and after the emission,

and a phase-space weight, WPSP = M4/ŝ2, which accounts for the altered incoming flux of

the parton-level differential cross section.

Similarly, the generic structure of final-initial dipole splitting cross sections

dPfi(fqi)→fgi(fgiq̄) for gluon (antiquark) emissions into the final state is fixed through

Dfi(fqi)→fgi(fgiq̄)(p⊥, y) =
fi(g)(x±, µF)

fi(q)(x̃±, µ̃F)

Q4 ξ C p2
⊥

[ŝ(p⊥, y) + Q2]2
D̂fi(fqi)→fgi(fgiq̄)(p⊥, y) , (3.25)
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Figure 5: Left panel: Feynman diagrams for the calculation of the emission matrix element

M0i→fg when considering FI quark-quark dipoles that emit a gluon, f = q and i = q′. Right panel:

Feynman graphs used to evaluate the emission matrix element M0g→fq̄ for q′f q̄i dipoles emitting a

quark (f = q′).

where the Mandelstam variable ŝ is related to the two-parton squared masses via ŝ =

sfg(fq̄). Note that the right-hand side of eq. (3.25) exhibits, as for emissions off II dipoles,

the additional PDF and phase-space weights. The formula has been derived along the

lines already employed for the II case, again in the limit of zero quark masses. As before,

by comparing the differential hadronic cross sections before and after the emission, the

emission part can be factored out when relying on dipole matrix-element factorization,

|M0i(0g)→fg(fq̄)|2 ≃ 8παs C D̂fi(fqi)→fgi(fgiq̄) |M0i(0q)→f |2 . (3.26)

Figure 5 shows the Feynman diagrams that are used to calculate the matrix elements for

M0q′→qg (left panel) and M0g→q′q̄ (right panel).

Like invariant squared amplitudes the dipole matrix elements D̂ obey crossing symme-

try. Therefore, as an alternative to the direct calculation of II/FI dipole matrix elements,

cf. eqs. (3.21) and (3.26), these D̂ expressions can be easily derived using crossing relations

given that the FF dipole matrix elements have been worked out, see eq. (3.17). In cases

where there are different particles in the final state, there is more than one possible crossing

and, therefore, more than one corresponding dipole matrix element. The only remaining

issues are the determination of the associated gluon-sharing and colour factors, ξ and C,

respectively. The latter are assigned according to the generic, large NC, colour structure

of the emission.

Concerning dipole matrix-element factorization, there are two possible approaches to

specify the dipole shower presented in this work. These approaches are:

• Extract the D̂ terms from the splitting cross sections employed in the Lund colour-

dipole model [15 – 17, 8] for remnant-free dipole cascading. Results for II/FI dipoles

are then derived from the corresponding FF dipole ones exploiting the crossing sym-

metry. In [16, 73] the Lund differential cross sections have been shown to obey the

correct QCD behaviour in the soft and/or collinear (Altarelli-Parisi) limit.4 This

reasoning therefore applies to the new cases as well.

4Strictly speaking, this matching in the singular domains of QCD has been demonstrated omitting the

influence of colour factors, i.e. it has been actually shown for the FF dipole matrix elements D̂.
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• Use the tree-level antenna functions presented in [41]. Their crossing symmetry has

been exploited already while considering antenna subtraction with hadronic initial

states, see [74]. Thus, the utilization of antenna functions, instead of the Lund

kinematic functions, has the clear advantage of constructing a dipole shower out of

subtraction terms that form the basis of the antenna subtraction method [40, 41]; it

therefore constitutes a very attractive alternative to the first approach.

In the subsequent sections of this publication the first approach is being followed in order to

allow for direct comparison with Ariadne in the FF case. All relevant gluon emission types

of 2 → 3 dipole splitting functions will be listed and their parton-radiation characteristics

in the various cases will be discussed. Finally, the performance of the full model is tested

focussing on comparisons with experimental data. It is worth stressing, however, that

the implementation of the second approach is straightforward and will be subject of a

forthcoming study.

4. Final-state colour dipoles

In this section emissions emerging from FF dipoles are discussed. This is the traditional

case already present within the original version of the CDM, implemented in Ariadne.

The dipole splitting process can be specified by

f(k̃) f̄ ′(ℓ̃) → f(k) g f̄ ′(ℓ) , (4.1)

cf. also figure 3.

4.1 Final-final dipole single-emission phase space and kinematics

Since the recoil of the emission will be completely shared between the three new partons,

momentum conservation,

p̃0 = p̃f + p̃f̄ ′ = pf + pg + pf̄ ′ = p0 , (4.2)

is realized between the momenta present before and after the emission. Note that apart

from ς0 = −1, all other signature factors equal one. Neglecting parton masses, the relations

0 ≤ smn = s0r = M2(1 − xr) ≤ M2 , m 6= n 6= r ∈ {f, g, f̄ ′} , (4.3)

and the identity

M2 = sfg + sgf̄ ′ + sff̄ ′ , also expressed by 2 = xf + xg + xf̄ ′ (4.4)

hold true. All energy fractions fall into the range 0 ≤ xr ≤ 1, and, hence, the physics

constraints imposed on the kinematic invariants smn are satisfied. Following the steps

outlined in section 3.2, the (p2
⊥, y) phase-space parametrization can be characterized:

• The two Lorentz invariant dipole evolution variables are

p2
⊥ =

sfg sgf̄ ′

M2
= M2(1 − xf̄ ′)(1 − xf ) , (4.5)
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cf. eqs. (2.11) and (3.11), and the associated rapidity y,

y =
1

2
ln

sgf̄ ′

sfg
=

1

2
ln

1 − xf

1 − xf̄ ′

, (4.6)

cf. eqs. (2.12) and (3.12). Therefore, the invariant masses can be re-expressed as,

sgf̄ ′ = Mp⊥e+y ,

sfg = Mp⊥e−y ,

sff̄ ′ = M2 − 2Mp⊥ cosh y , (4.7)

cf. eqs. (3.13). As expected, the dominant phase-space regions are characterized by

p⊥ → 0, which points at p⊥’s utilization as the ordering variable.

• The kinematic phase-space boundaries given through the relations in eqs. (4.3) de-

termine the (maximal) integration limits p2
⊥,high and y± stated in eq. (2.13). The

determination of the precise boundaries is determined by the constraint

sfg + sgf̄ ′ = M2 − sff̄ ′ ≤ M2 , (4.8)

leading to the following symmetric rapidity limits

|y| ≤ arcosh
M

2p⊥
= ln

(

M

2p⊥
+

√

M2

4p2
⊥

− 1

)

. (4.9)

The largest possible value for p2
⊥ can also be read off these bounds,

p2
⊥,max =

M2

4
. (4.10)

• Simple rapidity bounds overestimating the more exact interval are obtained, for ex-

ample, from sfg, sgf̄ ′ ≤ M2; this yields

Y− = − ln
M

p⊥
≤ y ≤ ln

M

p⊥
= Y+ , (4.11)

which is nothing but the (y, z = ln p⊥
M ) “triangle” commonly used to illustrate a

dipole emission phase space. The effect of the sharper bounds now becomes apparent:

they sizeably reduce the “triangle” area particularly in the central rapidity region,

see figure 6.

• Splitting kinematics: here the ideal frame to set up the new momenta is the

centre-of-mass system of the parent FF dipole. Light-cone momenta5 w.r.t. the axis

of the two original partons can conveniently be used. They yield

p̃0 =
(

M, M, ~0
)

→ p0 =
(

M, M, ~0
)

,

p̃f =
(

M, 0, ~0
)

→ pf =
(

f⊥ eyf , f⊥ e−yf , ~f⊥

)

,

5In this work, light-cone momenta are defined as follows: q = (q+, q−, ~q⊥) where q± = Eq ± q‖; on-shell

conditions can be intrinsically satisfied, if q = (m⊥ez, m⊥e−z, ~q⊥) is chosen, using m2
⊥ = q2 + q2

⊥ and

z = ln(q+/q−)/2 such that Eq = m⊥ cosh z and q‖ = m⊥ sinh z.
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Figure 6: The phase space for gluon emission off FF dipoles; the dark-coloured region visualizes

the available phase space. The bright colour is used to show the overestimation as given by the

approximate limits w.r.t. the strict ones. Note that z = ln p⊥

M
.

p̃f̄ ′ =
(

0, M, ~0
)

→ pf̄ ′ =
(

f ′
⊥ ey′

f , f ′
⊥ e−y′

f , ~f ′
⊥

)

,

pg = p0 − pf − pf̄ ′ . (4.12)

The ~f
(′)
⊥ and y

(′)
f are specified by the particular recoil strategies that are used for

the different types of FF dipoles. The choices taken here closely follow the approach

presented within the Lund CDM, see e.g. [8]. Thus, for gluon emissions off qq̄ dipoles,

the Kleiss trick [75] has been implemented to treat the recoils: the (anti)quark

will retain its direction after the emission with a probability x2
q(q̄)/(x

2
q + x2

q̄). For

qg dipoles, the recoil of the emitted gluon will be compensated by the quark only.

Specifying the kinematics of these cases (assuming, for example to preserve the

direction of the f̄ ′) leads to

f⊥ =
xfM

2
sinϑ , ~f⊥ = (f⊥ cos ϕ, f⊥ sin ϕ) (4.13)

and

yf =
1

2
ln

1 + cos ϑ

1 − cos ϑ
= ln

(

cot
ϑ

2

)

, (4.14)

where the polar angle ϑ is given through cos ϑ = (x2
g − x2

f − x2
f̄ ′)/(2xf xf̄ ′) and the

azimuthal angle ϕ is taken to be uniformly distributed between 0 and 2π. Moreover,

~f ′
⊥ ≡ ~0 , y′f ≡ ∞ , preserving the product f ′

⊥ey′
f = xf̄ ′M . (4.15)

For the distribution of recoils arising from gg dipole splittings, the simple specifi-

cation will be corrected by rotating around the ŷ axis in a way that the
∑

p2
T of

the parent gluons will be minimized, however, small perturbations introduced by an

additional rotation around the x̂ axis are allowed.

4.2 Splitting functions for final-state QCD radiation

In this section the refinements introduced by the Lund CDM [15 – 17, 8] to the simple

eikonal splitting cross sections are briefly reviewed, in particular those for gluons arising
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from a qf q̄f dipole. Following the reasoning of section 3.3, the dipole splitting function for

the 2 → 3 splitting qq̄′ → qgq̄′ is worked out from the comparison of the real-emission

process V → qq̄′g (see figure 3) to the Born contribution for the vector boson decay V →
qq̄′.6 For massless partons, the respective squared matrix elements averaged (summed)

over colour and spin initial (final) states are

|Mγ∗→qq̄|2 = 8 NC e2e2
q p̃qp̃q̄ = 8 NC e2e2

q

M2

2
,

|Mγ∗→qq̄g|2 = 8
N2

C − 1

2
e2e2

q 4παs

x2
q + x2

q̄

(1 − xq)(1 − xq̄)
. (4.16)

The Lorentz invariant energy fractions of the emission are defined in eq. (3.7), and, for

simplicity, V = γ∗ has been chosen, see e.g. [77]. Therefore,

dΓγ∗→qgq̄

dxqdxq̄
= dΓγ∗→qq̄

CF αs

2π

x2
q + x2

q̄

(1 − xq)(1 − xq̄)
, (4.17)

where CF = (N2
C − 1)/(2NC) is the colour factor of this emission. Obviously, in this case

the matrix-element factorization is exact allowing to read off the corresponding differential

dipole splitting cross section according to eq. (3.14),

dPqq̄→qgq̄

dp2
⊥dy

=
CF αs

2π

(1− p⊥
M e+y)2+(1− p⊥

M e−y)2

p2
⊥

=
CF αs

2π

x2
q(p⊥, y)+x2

q̄(p⊥, y)

p2
⊥

. (4.18)

The obvious overestimation of the exact result,

dPapprox
qq̄→qgq̄

dp2
⊥dy

=
CF αs

2π

2

p2
⊥

, (4.19)

in fact corresponds to a soft-gluon approximation neglecting quark spins, and allows for a

direct implementation in a veto algorithm. Moreover, the dipole matrix element identified

for the exact splitting can be cast into the following form:

D̂qq̄→qgq̄ =
x2

q + x2
q̄

p2
⊥

=
1

sqgq̄

(

sqg

sgq̄
+

sgq̄

sqg
+

2sqq̄sqgq̄

sqgsgq̄

)

, (4.20)

where the rightmost expression exactly reproduces the three-parton tree-level antenna func-

tion A0
3(1q, 3g, 2q̄) as stated in [41]. This case constitutes the easiest example for the com-

patibility of the two matrix-element factorization approaches.

Similar reasoning can be applied to yield the splitting functions for gluon emission

off quark-gluon and gluon-gluon FF dipoles [73]. It should be stressed, however, that in

these cases the dipole matrix-element factorization is correctly achieved only in the singular

limits of the emission. Taken together, the dipole splitting functions for gluon emission off

final-state dipoles in the Lund CDM [15 – 17] read

Dff̄ ′→fgf̄ ′(p⊥, y) = ξ{F
A}C{F

A}
[

x
nf

f (p⊥, y) + x
nf̄ ′

f̄ ′ (p⊥, y)
]

≤ 2 ξ{F
A}C{F

A} ≡ Dapprox
ff̄ ′→fgf̄ ′(p⊥, y) .

(4.21)

6The inclusion of various correlations depends on exactly which processes are selected. For example,

also the correlation of the leptons, producing the vector boson V , with the quarks could be accounted for

by taking the processes ℓℓ̄′ → qq̄′(g) instead [75, 76].
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They are all implemented in Ariadne and will be used in the model presented here as

well. The invariant energy fractions are given by

xf,f̄ ′ = 1 − p⊥
M

e±y . (4.22)

Here and in the following, the parton-dependent exponents are defined as nq,g = 2, 3 and

the curly-brackets notation is understood as
{

... for quark dipoles

... else

}

. Note that ξF = 1; in the

splitting functions for dipoles consisting of at least one gluon the factor of ξA = 1
2 enters,

since gluons are shared among two dipoles. The Dapprox
ff̄ ′→fgf̄ ′ not only give upper bounds to

the exact splitting functions, they also imply eikonal approximations to the splitting cross

sections of eq. (3.14).

A subtle issue in the formulation of a dipole shower is the assignment of colour factors.

Obviously, for quark-quark and purely gluonic dipoles there are no problems, and, unam-

biguously, C = CF and C = CA, respectively. For dipoles consisting of a(n) (anti)quark

and a gluon, it is known that the colour factor cannot be pinpointed as straightforwardly

as in the other cases, since e.g. for collinear radiation, the considered gluon emission can

be traced back to either the (parent) quark or the (parent) gluon, such that in this limit

the emission is therefore governed by CF or CA, respectively. Literally taken, these dif-

ferent colour-factor regimes have to be taken into account. This will lead to modifications

of the corresponding dipole splitting functions and, possibly, to a decomposition (parti-

tioning) of them into sub-contributions (subantennæ) addressing these different regimes

unambiguously. However, in the large NC limit, underlying the construction of shower

codes, this issue triggers subleading effects only, since 2CF , CA → NC keeping in mind

that the gluon-sharing factor is ξA = 1
2 .

5. Initial-state colour dipoles

The first case, which goes beyond the original CDM, is radiation off an initial-state dipole

ı̄′i of mass M . Two generic splittings based on gluon emission are available, namely

ı̄′(k̃) i(ℓ̃) → ı̄′(k) g i(ℓ) and q̄i(k̃) i(ℓ̃) → q(k) gi i(ℓ) ; (5.1)

cf. also figure 4, left and right panel, respectively.

5.1 Single-emission kinematics

Restating eqs. (3.4) and (3.5) for the II dipole scenario, i.e. setting ς0 = ςg/q = 1 and all

other signature factors equal to −1, yields

p̃ı̄′/q̄i
+ p̃i = p̃0 and pı̄′/gi

+ pi = p0 + pg/q , with p2
0 = p̃2

0 = M2 . (5.2)

As already noted, the kinematics of the emission process here corresponds to that of a

2 → 2 scattering process rather than to that of a 1 → 3 decay. The recoil of the emitted

parton pg/q cannot be absorbed by pı̄′/gi
and pi, since they are fixed to the beam axis.
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Thus, in contrast to the previously presented case, p̃0 6= p0.
7 For the scattering process,

Mandelstam variables are defined as

ŝ = (p0 + pg/q)
2 = (pı̄′/gi

+ pi)
2 = M2(1 + xg/q) ≥ M2 ≡ ŝ0 ,

t̂ = (p0 − pi)
2 = (pı̄′/gi

− pg/q)
2 = M2(1 − xi) ≤ 0 ,

û = (p0 − pı̄′/gi
)2 = (pi − pg/q)

2 = M2(1 − xı̄′/gi
) ≤ 0 , (5.3)

where, again for massless partons, the bounds on ŝ, t̂ and û together with their parametriza-

tions in terms of energy fractions are simple, and, furthermore,

ŝ + t̂ + û = M2 as well as xı̄′/gi
+ xi = 2 + xg/q . (5.4)

As already indicated, the emission of a parton here requires an increase in ŝ w.r.t. ŝ0, related

to an increase of the “Bjørken-x”. This is in contrast to the FF case, where the system’s

centre-of-mass energy remains constant. To deal with this issue, a generic parametrization

is introduced, which relates the maximal partonic centre-of-mass squared energy to the

squared mass of the parent dipole,

ŝmax = aM2 ≥ ŝ , such that 1 ≤ ŝ/M2 ≤ a ≤ S/M2 , (5.5)

where
√

S is the centre-of-mass energy of the colliding hadrons. The limits on the invariants,

detailed in eqs. (5.3) and (5.5), clearly differ from the ones of the FF scenario, cf. section 4.1.

This implies that the II dipole splittings arise in phase-space regions being distinct from the

FF case and thus with a different kinematics. Consequently, the energy fractions populate

new ranges compared to the FF splittings, viz.

0 ≤ xg/q ≤ a − 1 ,

1 ≤ xı̄′/gi
, xi ≤ 1 + xg/q ,

2 ≤ xı̄′/gi
+ xi ≤ 1 + a . (5.6)

The phase-space parametrization is better worked out separately for both relevant II dipole

splitting channels.

5.1.1 Gluon emission phase space of initial-initial dipoles

First, the case of final-state gluon (gf) emission, i.e. ı̄′i → ı̄′gi, is discussed (see figure 4

left part):

• The evolution variables are taken as suggested by eqs. (3.11) and (3.12). The Lorentz

invariant p2
⊥ thus reads

p2
⊥ =

∣

∣

∣

∣

sı̄′g sgi

sı̄′gi

∣

∣

∣

∣

=
t̂ û

M2
= M2(1 − xi)(1 − xı̄′) , (5.7)

and the Lorentz invariant y is given by

y =
1

2
ln

∣

∣

∣

∣

sgi

sı̄′g

∣

∣

∣

∣

=
1

2
ln

û

t̂
=

1

2
ln

1 − xı̄′

1 − xi
, (5.8)

7Unless the converse is enforced by a recoil handling in the ı̄′i dipole’s rest frame.
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such that the kinematic invariants can be re-written as

ŝ = s0g = sı̄′i = M2 + 2M p⊥ cosh y ≥ M2 ,

t̂ = s0i = sı̄′g = −M p⊥e−y ≤ 0 ,

û = s0ı̄′ = sgi = −M p⊥e+y ≤ 0 . (5.9)

• The bounds on the Mandelstam variables — or equally well — on the invariant

energy fractions translate, of course, into bounds on the evolution variables. As for

FF dipoles emitting gluons, the more restrictive requirement is obtained from

(a − 1)M2 = ŝmax − M2 ≥ ŝ − M2 = −û − t̂ = 2M p⊥ cosh y . (5.10)

Hence, the allowed phase space, which is depicted in the left part of figure 7, is

described quantitatively through

|y| ≤ arcosh
(a − 1)M

2 p⊥
, (5.11)

and8

p2
⊥,max =

(ŝmax − M2)2

4M2
=

(a − 1)2M2

4
. (5.12)

• Weaker constraints are obtained from

ŝmax − M2 ≥ ŝ − M2 ≥ −û,−t̂ (5.13)

and, as in the FF case, they result in symmetric rapidity limits,

|y| ≤ ln
ŝmax − M2

M p⊥
= ln

(a − 1)M

p⊥
. (5.14)

These estimates again can be visualized by a “triangle” in the (y, z = ln p⊥
(a−1)M )

plane.

• The splitting kinematics will be detailed in section 5.1.3 together with that of the

quark-emission process.

Compared to the FF case, a new issue emerges: the maximal partonic centre-of-mass ŝmax

is not fixed and can be chosen. The actual choice then regulates the maximal size of the

allowed emission phase space. This will be discussed together with the shower algorithm

in section 7.

8The maximal rapidity range is determined by the overall cut-off on p⊥: ŝmax − M2 =

2M p⊥,cut cosh|y|max.
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z

y

z

y

Figure 7: The accessible phase space for final-state (left panel) and initial-state (right panel) gluon

emission off II dipoles. Bright colours indicate the phase-space fractions, which overestimate the

respective allowed phase-space regions, which are shown in dark colours. The definitions of z are,

z = ln p⊥

(a−1)M and z = ln p⊥

aM
for gf and gi emissions, respectively. Notice that the visualization of

the gi emission phase space is for a = 2.

5.1.2 Quark emission phase space of initial-initial dipoles

Along the lines of the previous section, the phase-space parametrization and its conse-

quences are now discussed for gluon emission into the initial state (gi), i.e. (massless)

quark emission into the final state: q̄ii → qgii (see figure 4 right part). The details of the

kinematics as outlined in section 3.2 are as follows.

• The Lorentz invariant shower variables expressed through the Mandelstam variables

read

p2
⊥ =

∣

∣

∣

∣

sqgi
sgii

sqgii

∣

∣

∣

∣

= − t̂ ŝ

M2
= M2(xi − 1)(1 + xq) , (5.15)

and

y =
1

2
ln

∣

∣

∣

∣

sgii

sqgi

∣

∣

∣

∣

=
1

2
ln

ŝ

−t̂
=

1

2
ln

1 + xq

xi − 1
. (5.16)

This allows to rewrite the kinematic invariants as

ŝ = s0q = sgii = +M p⊥e+y ≥ M2 ,

t̂ = s0i = sqgi
= −M p⊥e−y ≤ 0 ,

û = s0gi
= sqi = M2 − 2M p⊥ sinh y ≤ 0 , (5.17)

implying, compared to the case of gf emission, a different shape of the valid (p⊥, y)

phase space covered by this type of emission.

• The accessible rapidity range is (cf. right panel of figure 7)

ln

(

M

2p⊥
+

√

M2

4p2
⊥

+ 1

)

= arsinh
M

2 p⊥
≤ y ≤ ln

aM

p⊥
, (5.18)

where the left and right bounds result from û ≤ 0 and ŝ ≤ ŝmax, cf. eq. (5.5),

respectively. This can be visualized in the (y, z = ln p⊥
a M ) plane as a “strip” that
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emerges in the point (ymin, zmax = −ymin) and is confined between z = −y− ln a and

z = −y. The equations ymin = arsinh M
2 p⊥,max

and ŝmax = M p⊥,max eymin yield

ymin =
1

2
ln

ŝmax

ŝmax − M2
=

1

2
ln

a

a − 1
, (5.19)

and

p2
⊥,max = (ŝmax − M2)

ŝmax

M2
= a(a − 1)M2 . (5.20)

• The allowed phase-space region is safely covered by a “half-triangle” described

through ymin ≤ y ≤ −z. Accordingly, ∆y = −z − ymin = ln(p2
⊥,max/p

2
⊥)/2.

• The splitting kinematics is presented in the next subsection.

Finally, notice that, as for gf emissions, the single-emission phase-space maximally available

is determined by the actual value given to ŝmax.

5.1.3 Construction of the splitting kinematics

In the model proposed here the initial-initial dipole kinematics is directly constructed in

the lab-frame. Particularly, to handle the recoils for the case of q̄′iqi dipoles, the strategy

according to Kleiss [75, 76] has been implemented.

Lab-frame kinematics: the fixed orientation of incoming partons implies that the emit-

ted parton’s recoil will directly be transferred to the entire final-state system, i.e. to all

QCD and non-QCD final-state particles that are present before the emission takes place.

As an example, consider the first emission in a Drell-Yan process, where the corresponding

recoil is compensated for by the lepton pair. This recoil transfer results in p̃0 6= p0, and,

therefore, a Lorentz transformation T defined through p0 = T p̃0 is necessary and will be

applied on all particles (whose vectors are summed up in p̃0). For the construction of the

momenta, a light-cone decomposition w.r.t. the beam axis is well suited, such that, for

massless partons, the situation before and after the emission is summarized as

p̃i =
(

x̃+

√
S, 0, ~0

)

→ pi =
(

x+

√
S, 0, ~0

)

,

p̃ı̄′/q̄i
=
(

0, x̃−

√
S, ~0

)

→ pı̄′/gi
=
(

0, x−

√
S, ~0

)

,

p̃0 =
(

M eỹ0 , M e−ỹ0 , ~0
)

→ p0 =
(

M⊥ ey0 , M⊥ e−y0 , −~ℓ⊥

)

,

pg/q =
(

ℓ⊥ eye , ℓ⊥ e−ye , ~ℓ⊥

)

. (5.21)

Furthermore, ŝ0 = x̃+x̃−S = M2 and ỹ0 = ỹcm = ln(x̃+/x̃−)/2 with ỹcm denoting the

centre-of-mass rapidity of the parton system. The x̃±, here functions of M , S and ỹcm,

parametrize the momentum fractions of the partons w.r.t their respective hadron. Em-

ploying M2
⊥ = M2 + ℓ2

⊥, after the emission they read

x± =
ℓ⊥ e±ye + M⊥ e±y0

√
S

≥ x̃± . (5.22)
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Clearly, emissions leading to x± > 1 must be rejected. The vector ~ℓ⊥ = (ℓ⊥ cos ϕ, ℓ⊥ sinϕ)

and the quantity ye denote the transverse momentum and the rapidity of the emitted

parton w.r.t. the beam axis, respectively. In terms of the Mandelstam variables, cf.

eqs. (5.3), they are:

ℓ2
⊥ =

t̂ û

ŝ
and eye =

ey0

M⊥ℓ⊥
(−t̂ − ℓ2

⊥) . (5.23)

The azimuthal angle ϕ can in first approximation be assumed to be uniformly distributed,

and ŝ, t̂, û are determined by the evolution parameters p2
⊥ and y through eqs. (5.9) and

eqs. (5.17) for gf and gi emissions, respectively. The squared lab-frame transverse momenta

are exemplified below as functions of p⊥ and y. For gluon emission into the final state,

ℓ2
⊥ =

M2 p2
⊥

ŝ
=

p2
⊥

2 p⊥M−1 cosh y + 1
, (5.24)

whereas for quark emission,

ℓ2
⊥ =

M2 p2
⊥

ŝ
− (M2 + |t̂|) |t̂|

ŝ
= (Me−y)2 (2 p⊥M−1 sinh y − 1) . (5.25)

When comparing both equations for the same ratio p2
⊥/ŝ, it becomes apparent that the

emissions of quarks yield smaller lab-frame transverse momenta than those of gluons.

To fix the last degree of freedom, an additional assumption is necessary, which is to

preserve the rapidity of the system of outgoing particles, y0 = ỹ0 = ỹcm.9 Having the

complete emission at hand, ŝ = x+x−S and ycm = ln(x+/x−)/2 = ln(û/t̂)/2 + ye .10 In

more detail,

ycm = ỹcm +
1

2
ln

û

t̂
+ ln





−t̂ (ŝ + û)
√

M2 ŝ t̂ û + (t̂ û)2



 = ỹcm +
1

2
ln

M2 − t̂

ŝ + t̂
, (5.26)

which exposes the impact of the y0 = ỹcm choice and shows that the system undergoes

a rapidity shift during splitting. In addition, the new momentum fractions x± can be

written down,

x± = e±y0

√

ŝ

S

(

M2 − t̂

ŝ + t̂

)±1

. (5.27)

Finally the momenta, p̃
(j)
0 , of all final-state particles, numbered by j, have to be trans-

formed in order to account for the non-trivial change of p̃0 → p0. Here, the Lorentz

transformation T is specified as follows: the particles are boosted into the original dipole’s

centre-of-mass frame, afterwards the boost that forms p0 out of (M,~0) is applied on them

likewise. Altogether p
(j)
0 = B(−~p0/p

0
0)B(~̃p0/p̃

0
0) p̃

(j)
0 = T p̃

(j)
0 is computed. This finalizes the

construction of the on-shell kinematics of an individual emission.

9If ycm = ỹcm was naively exploited, the ratio of momentum fractions would remain constant,

x+/x− = x̃+/x̃−, which constitutes a rather strange behaviour, since, for instance, very asymmetric starting

configurations would persist to the end of the shower evolution.
10Particularly, for gluon emissions into the final state, ycm − ye = y. This simply expresses that rapidity

differences are invariant under boosts along the beam axis.
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Improved description of lepton-hadron correlations (Kleiss trick): when analyz-

ing eqs. (5.21) again, it is noticed that, apart from the azimuthal angle ϕ, which eventually

fixes the vector ~ℓ⊥, all unknown variables are determined by Lorentz invariants plus the

additional assumption y0 = ycm.11 In a first approximation, the choice is to uniformly dis-

tribute in azimuth w.r.t. the lab-frame, but more sophisticated schemes can be introduced

correcting this simple ansatz. One such scheme can be derived from the work presented

in [75] where it has been shown how to exactly factorize the first order tree-level correc-

tions to the electroweak production of quarks. The corresponding Monte Carlo algorithm

in fact is employed within the Lund CDM to arrange the splitting kinematics of qf q̄
′
f dipoles.

In [76] this factorization was proven for scattering and annihilation processes involving ini-

tial states and corresponding algorithms were developed. Accordingly, for the q̄′iqi dipoles

of this model, the suggestion of [76] has been employed to improve the splitting kinemat-

ics: the new momenta are constructed in the original dipole’s rest frame in a distinct way,

then they are transformed to the lab-frame such that the 0-particle’s rapidity is preserved.

The essence is that the primitive ϕ choice is substituted by a prescription, which e.g. in

Drell-Yan processes correctly accounts for correlations between the radiated parton and

the leptons.12 As before, the particles associated to the parent II dipole have to be trans-

formed, however they now undergo a more complicated series of transformations out of the

(before-emission) lab-frame, i.e. more accurately

p
(j)
0 = B‖

(

β3 =
p0,+ − e2y0p0,−

p0,+ + e2y0p0,−

∣

∣

∣

∣

ẑ-align.f.

)

RẑBalign





~pı̄′/gi
+ ~pi

p0
ı̄′/gi

+ p0
i

∣

∣

∣

∣

∣

dip.rf.



B‖

(

~̃p0

p̃0
0

)

p̃
(j)
0 ,

(5.28)

where starting from the right, one applies to a momentum: the longitudinal boost into the

dipole’s rest frame, the alignment boost followed by the rotation that brings the newly in-

coming partons onto the light-cone axis maintaining the initial ± assignments, and the final

longitudinal boost to satisfy that y0 stays the same as it was before the emission, i.e. y0 = ỹ0.

5.2 Initial-initial dipole splitting functions

The first QCD-type emission in vector boson production (real-gluon bremsstrahlung or

QCD Compton scattering) can be described as a coherent emission of a gluon or a(n)

(anti)quark off the primary q̄iq
′
i dipole, cf. figure 1. For gluon bremsstrahlung q̄q′ → V g

(gf emission) and QCD Compton scattering gq′ → V q (gi emission), the amplitudes can be

worked out from the Feynman diagrams depicted in figure 8. The partonic squared matrix

elements, with colour and spin indices averaged (summed) over initial (final) states, can

then be expressed in terms of the Born amplitude squared as

|Mgf

q̄q′→V g|2 =
N2

C − 1

2NC
4παs

|Mq̄q′→V |2
M2/2

M4 + ŝ2 − 2ût̂

ût̂
, (5.29)

11Therefore, when neglecting the angle ϕ, it makes no difference whether the kinematics is arranged in

the parent dipole’s rest frame or in the lab-frame.
12Recall that these (Kleiss) corrections were derived for coupling the leptonic and hadronic parts via a

vector particle, thus they cannot be applied to e.g. Higgs production.
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V g

q’ q− q’ q

V g

− q’ g

V q

q’ g

qV

Figure 8: Relevant Feynman diagrams contributing to vector boson production in association with

a gluon (left panel, showing the t̂ and û channel graphs) or with a quark (right panel, visualizing

the t̂ and ŝ channel graphs). The modified colour flows due to the emission are illustrated by the

thick lines.

and

|Mgi

gq′→V q|2 =
1

2
4παs

|Mq̄q′→V |2
M2/2

M4 + û2 − 2ŝt̂

−ŝt̂
, (5.30)

respectively, whereas the Mandelstam variables have been defined in eqs. (5.3). Again, in

this particular case the factorization is exact and the equations above fix the dipole matrix

elements D̂q̄iq′i→q̄igq′
i
(qgiq′i)

, which are in fact related to Dqq̄′→qgq̄′ by crossing symmetry. The

colour factor for the gf emission is CF . However, if the radiated gluon is assigned to the

initial state, it actually is incoming and splits into a qq̄ pair with one of the quarks entering

the hard process. So, the colour averaging changes relative to the gf case by NC/(N2
C − 1);

therefore, the colour factor amounts to TR = 1
2 .

For all initial-initial dipoles containing gluons, the dipole matrix elements may be ob-

tained either directly in a similar way, or they are inferred from their final-final counterparts

of the Lund CDM using crossing relations, D̂II = cross D̂FF, cf. sections 3.3 and 4.2. The

recoil strategies presented in section 5.1.3 lead to trivial rapidity Jacobians, dycm

dỹcm
= 1. The

initial-initial dipole splitting functions of eq. (3.24) are then fully specified: for gluons gf

emitted into the final state,

Dı̄′i→ı̄′gi(p⊥, y) =
fı̄′(x±, µF) fi(x∓, µF)

fı̄′(x̃±, µ̃F) fi(x̃∓, µ̃F)
ξ{F

A}C{F
A}

x
nı̄′

ı̄′ (p⊥, y) + xni
i (p⊥, y)

[xı̄′(p⊥, y) + xi(p⊥, y) − 1]2

≤ NPDF ξ{F
A}C{F

A}
{

2

a + 1

}

≡ Dapprox
ı̄′i→ı̄′gi(p⊥, y) ,

(5.31)

where the energy fractions are given as

xı̄′,i(p⊥, y) = 1 +
p⊥
M

e±y , (5.32)

and, for gluons gi radiated into the initial state,

Dq̄ii→qgii(p⊥, y) =
fg(x±, µF) fi(x∓, µF)

fq̄(x̃±, µ̃F) fi(x̃∓, µ̃F)
TR

x2
q(p⊥, y) + xni

i (p⊥, y)

[1 + xq(p⊥, y)]2

≤ NPDF TR

{

2

a + 1

}

≡ Dapprox
q̄ii→qgii

(p⊥, y) ,

(5.33)
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where the energy fractions are characterized by

xq,i(p⊥, y) = ∓1 +
p⊥
M

e±y . (5.34)

In both cases the overestimations Dapprox
... finally determine eikonal approximations to the

improved splitting cross sections. The NPDF factors denote estimates for the respective

upper bounds of the PDF ratios. The tilde variables refer to the before-emission state.

All splitting functions discussed here are finite, i.e. the (soft and collinear) singularities

of the various differential splitting cross sections defined through eq. (3.14) are entirely

contained in the 1/p2
⊥ term of eq. (3.14). This nicely confirms that each eikonal cross

section encodes the full singularity structure of the exact result. For gf emissions, the

invariant transverse momentum will tend to zero in either of the collinear limits that the

gluon can have with the parent partons, i.e. the t̂ or û variables turn independently to zero,

or in the soft limit where xg → 0 and therefore t̂ and û collectively approach the limit at

zero. For gi emissions, the divergence pattern is not as rich as for gf emissions off II dipoles,

since ŝ is bounded to stay well above zero owing to the mass of the parent dipole. So, it only

is critical if the emitted quark becomes soft or collinear with the incoming splitting gluon

gi. No other radiating dipole contributes to this singularity, therefore ξ ≡ 1, consequently

being omitted in the corresponding formulæ above.

The colour-factor assignment is unproblematic for quark dipoles q̄iq
′
i (see above) and

also for gluon dipoles gigi, where C = CA and ξ = ξA = 0.5. For II dipoles with a single

gluon leg, the ambiguities beyond the large NC limit appear in the same way as in the FF

case. The following choices are currently made: final-state gluons are emitted adopting

the Lund CDM choice of C = CA (and ξ = ξA = 0.5); for initial-state ones, C = TR

(and ξ = 1) is selected adopting the result from the calculation for q̄iq
′
i dipoles. Since

ŝ ≥ M2 > 0, the selection C = TR at least ensures the correct behaviour in the singular

limit t̂ → 0 of gi emissions.

6. Dipoles from final-initial colour flows

The branching of an FI dipole, fi, caused by a gluon may occur again in two ways by

either radiating it to the final state, or to the initial state, releasing an antiquark instead:

f(k̃) i(ℓ̃) → f(k) g i(ℓ) and f(k̃) qi(ℓ̃) → f(k) gi q̄(ℓ) ; (6.1)

cf. also figure 5, left and right panel, respectively.

6.1 Single-emission kinematics

Factorization implies that in deep inelastic scattering the evolution of the QCD particles

proceeds completely independently of the evolution of the leptonic part. Therefore, not

only the squared momentum transfer q2 = −Q2 from the lepton to the parton, probed by

the scattering of the virtual photon, is a constant, but also qµ = kµ
e −k′µ

e remains unaltered,

when emitting QCD secondaries. This is used as the paradigm for the construction of the

FI dipole kinematics in this model. Hence, similar to FF and in contrast to II dipoles, here

– 29 –



J
H
E
P
0
7
(
2
0
0
8
)
0
4
0

the subsystem kinematically fully decouples from the rest of the cascade. Thus, in the FI

case the partons directly participating in the splitting are affected only. Therefore,

p̃0 ≡ p0 (6.2)

and

p̃0 + p̃i/qi
= p̃f , p0 + pi/gi

= pf + pg/q̄ , with p̃2
0 = M2 ≡ −Q2 < 0 , (6.3)

such that Q may be interpreted as the “mass” of the parent dipole. Taking eqs. (3.4)

and (3.5), the signature factors are ς̃f = ςf = ςg/q̄ = 1, all other ones equal −1. The under-

lying 2 → 2 process implies to define the kinematic invariants for radiating FI dipoles as

ŝ = (p0 + pi/gi
)2 = (pf + pg/q̄)

2 = −Q2(1 + xi/gi
) ≥ 0 ≡ ŝ0 ,

t̂ = (p0 − pf )2 = (pg/q̄ − pi/gi
)2 = −Q2(1 − xf ) ≤ 0 ,

û = (p0 − pg/q̄)
2 = (pf − pi/gi

)2 = −Q2(1 − xg/q̄) ≤ 0 , (6.4)

where the identification of the energy fractions and the bounds are again given for massless

partons. The Mandelstam variables then satisfy

ŝ + t̂ + û + Q2 = 0 such that 2 + xi/gi
= xf + xg/q̄ . (6.5)

In analogy to the case of II dipoles, the maximal ŝ is parametrized in terms of Q2 as

ŝmax = aQ2 implying that 0 ≤ ŝ ≤ ŝmax ≤ S . (6.6)

Here, the quantity S = (p0 + P )2 plays the rôle, which the squared collider energy S does

for II dipoles, namely representing the maximal upper bound. The use of p0 = p̃0 and the

rigorous definition of the Bjørken-x variable,

xB =
Q2

2 p̃0P
, (6.7)

where P labels the momentum of the incoming hadron, lead to

S = Q2

(

1

xB
− 1

)

. (6.8)

This signifies that the Bjørken-x determines the maximal range for the parameter a,

namely 0 ≤ a ≤ 1/xB − 1. Since parton masses are neglected, ŝ0 = (p̃0 + p̃i/qi
)2 = 0 and

the Bjørken-x is the momentum fraction x̃ of the original incoming parton, p̃i/qi
= xBP .

Employing pi/gi
= xP , it is found that xB ≤ x = −xi/gi

xB ≤ (a + 1)xB ≤ 1 and the limits

on xi/gi
are clear:

−1 − a ≤ xi/gi
≤ −1 ,

1 + xi/gi
≤ xf , xg/q̄ ≤ 1 ,

1 − a ≤ xf + xg/q̄ ≤ 1 . (6.9)

The various other bounds then follow from eqs. (6.4) and (6.5).
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6.1.1 Gluon emission phase space of final-initial dipoles

First, FI dipole gluon emissions emerging into the final state, fi → fgi (see figure 5 left

part), are discussed according to the steps outlined in section 3.2:

• The evolution variables are identified as before by specifying eqs. (3.11) and (3.12)

for the case at hand. They read

p2
⊥ =

∣

∣

∣

∣

sfg sgi

sfgi

∣

∣

∣

∣

=
ŝ t̂

−Q2
= Q2(|xi| − 1)(1 − xf ) , (6.10)

and

y =
1

2
ln

∣

∣

∣

∣

sgi

sfg

∣

∣

∣

∣

=
1

2
ln

−t̂

ŝ
=

1

2
ln

1 − xf

|xi| − 1
, (6.11)

whereas, using eqs. (6.4), the Mandelstam variables can be rewritten as

ŝ = s0i = sfg = +Qp⊥e−y ≥ 0 ,

t̂ = s0f = sgi = −Qp⊥e+y ≤ 0 ,

û = s0g = sfi = −Q2 + 2Qp⊥ sinh y ≤ 0 . (6.12)

Obviously, the rightmost relations for ŝ and t̂ are trivially fulfilled.

• The largest phase space available is found from ŝ ≤ ŝmax, cf. eq. (6.6), and û ≤ 0,

hence

− ln
aQ

p⊥
≤ y ≤ arsinh

Q

2 p⊥
. (6.13)

In the (y, z = ln p⊥
a Q) plane, see left part of figure 9, these bounds manifest themselves

in a deformed “triangle”, whose right side is curved to the inside diverging for y → 0

while approaching z = −y−ln a for y → ∞. The left side of the “triangle” is described

by z ≤ y and the intersection is at (y = zmax, zmax = ln
√

1 + 1/a ), suggesting that

p2
⊥,max = a (a + 1)Q2 = (ŝmax + Q2)

ŝmax

Q2
. (6.14)

Similar to II dipole splittings, the maximum size of the emission phase space is

dictated by the choice of ŝmax, see eq. (6.6). This can easily be understood, since the

emission implies a new initial state with a larger momentum fraction taken off the

corresponding hadron.

• The exact rapidity interval is overestimated through the “triangle” bounds, which

read z ≤ y ≤ −z + 2 zmax, resulting in ∆y = ln(p2
⊥,max/p

2
⊥).

• Again, the construction of the momenta is separately detailed, see section 6.1.3.
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z

y

z

y

z∆

∆z = ln(a+1)

Figure 9: Phase-space visualization of the final-state (left panel) and initial-state (right panel)

gluon emissions off FI dipoles. Again, dark colours indicate the available phase space for the

emissions, whereas the fractions of phase space stemming from the overestimations are shown in

bright colours. The definitions are z = ln p⊥

aQ
and z = ln p⊥

(a+1)Q for gf and gi emissions, respectively.

Note that, for the visualization here, a = 1 has been assumed.

6.1.2 Antiquark emission phase space of final-initial dipoles

In this subsection, the phase-space parametrization for gluon emission into the initial state,

i.e. antiquark emission into the final state, is discussed for massless (anti)quarks, fqi → fgiq̄

(see figure 5 right part):

• According to eqs. (3.11), (3.12) and (6.4) the evolution variables read

p2
⊥ =

∣

∣

∣

∣

sfgi
sgiq̄

sfgiq̄

∣

∣

∣

∣

=
û t̂

Q2
= Q2(1 − xq̄)(1 − xf ) , (6.15)

and

y =
1

2
ln

∣

∣

∣

∣

sgiq̄

sfgi

∣

∣

∣

∣

=
1

2
ln

t̂

û
=

1

2
ln

1 − xf

1 − xq̄
. (6.16)

The Mandelstam variables are then cast into the form

ŝ = s0gi
= sfq̄ = 2Qp⊥ cosh y − Q2 ≥ 0 ,

t̂ = s0f = sgiq̄ = −Qp⊥e+y ≤ 0 ,

û = s0q̄ = sfgi
= −Qp⊥e−y ≤ 0 , (6.17)

where the inequalities for t̂ and û are satisfied by construction.

• The requirement 0 ≤ ŝ ≤ ŝmax = aQ2 in conjunction with eqs. (6.17) leads to

arcosh
Q

2 p⊥
≤ |y| ≤ arcosh

ŝmax + Q2

2Qp⊥
= arcosh

(a + 1)Q

2 p⊥
, (6.18)

where the inner and outer bounds follow from the lower and upper limits of the

accessible ŝ interval, respectively. Concerning the former the central rapidity region

becomes unaccessible for emissions of p⊥ < Q/2 (cf. right part of figure 9). In the

latter case the similarities to gf emissions off II dipoles, cf. section 5.1.1, are fairly
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obvious. If the available squared energy ŝmax is fully used to generate the transverse

momentum then cosh y ≡ 1 and the maximal p⊥ is achieved, given by

p2
⊥,max =

(ŝmax + Q2)2

4Q2
=

1

4
(a + 1)2 Q2 . (6.19)

As in all cases involving initial-state partons, the adjustment of the size of the phase

space is triggered by the choice of ŝmax, which will be discussed in section 7.

• Loose constraints stem from ŝmax + Q2 ≥ −t̂,−û and yield an increased phase space

w.r.t. the precise one discussed above:

|y| ≤ ln
ŝmax + Q2

Qp⊥
= ln

(a + 1)Q

p⊥
. (6.20)

This invokes the usual “triangle” interpretation in the (y, z = ln p⊥
(a+1) Q) plane.

• The splitting kinematics will be discussed in the next subsection.

6.1.3 Construction of the emission momenta

The basic construction principles mentioned throughout sections 3 and 5.1.3 are, of course,

taken over when explicitly establishing the FI splitting kinematics. The kinematic de-

coupling, encoded as p0 ≡ p̃0, alleviates the task, since Lorentz transformations will only

affect the local splitting. Thus, including the fact that the squared dipole momentum

p̃2
0 = (p̃f − p̃i/qi

)2 = −Q2, the original dipole’s Breit-frame constitutes a suitable frame

to set up the three new four-momenta. Using light-cone notation again, in this frame the

momenta read

p̃0 =
(

−Q, Q, ~0
)

→ p0 =
(

−Q, Q, ~0
)

,

p̃i/qi
=
(

Q, 0, ~0
)

→ pi/gi
=
(

−xi/gi
Q, 0, ~0

)

,

p̃f =
(

0, Q, ~0
)

→ pf =

(

(1−xf )(−xi/gi
−1)

|xi/gi
| Q,

xf−xi/gi
−1

|xi/gi
| Q,~b⊥

)

,

pg/q̄ = p0 + pi/gi
− pf . (6.21)

The Breit-frame transverse momentum is given through ~b⊥ = (b⊥ cos ϕ, b⊥ sin ϕ), where

b⊥ =

√
ŝ t̂ û

ŝ + Q2
=
√

(1 − xf )(−xi/gi
− 1)(xf − xi/gi

− 1)
Q

|xi/gi
| . (6.22)

Note that, for gf emissions, it becomes zero for û → 0 (in this limit the rapidity value

associated to this emission coincides with the y+ bound, cf. section 6.1.1). This just happens

independently of the actual value for the evolution variable p⊥, therefore, ordering the

emissions in p⊥ does not impose any ordering in b⊥. Finally, the new Breit-frame momenta

are transformed into the lab-frame.13

13This is done by inverting the transformations that (1) align the lab-frame momenta p̃i/qi and p̃f and

(2) rotate them afterwards onto the ẑ axis.
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Using eqs. (6.21) the recoil strategy can directly be read off: before and after the

splitting the initial-state parton is fixed to the + direction of the light-cone decomposition,

therefore to the beam axis,14 leaving the recoil to be completely compensated for by the

final-state particle. Of course, more sophisticated recoil strategies following the ones of

the Lund model and/or the Kleiss idea are possible, but not yet implemented. Especially

the prescription for quark scattering processes given in [76] seems very attractive, since it

includes the correlations between leptons and partons associated to the lowest-order DIS

process and the first emission.

6.2 Final-initial dipole splitting functions

For qq′i dipoles emitting gluons, the two respective matrix-element factorizations of

eq. (3.26) can directly be specified utilizing the results15 for the two typical real-correction

processes to leading order DIS, namely the QCD Compton and the boson-gluon fusion

processes, see figure 5. These are compared to the sole scattering of a quark caused by

a spacelike vector boson; hence, the dipole’s gluon emission will again be treated coher-

ently and, moreover, exact factorization is achieved as in all other quark-dipole cases.

This yields the corresponding dipole matrix elements, both of which in fact reflecting the

crossing symmetry of the D̂qq̄′→qgq̄′ term:

D̂qq′
i
→qgq′

i
=

1

Q2

ŝ2 + t̂2 − 2ûQ2

−ŝt̂
= −

x2
q′i

+ x2
q

Q2(1 + xq′i
)(1 − xq)

=
x2

q′i
+ x2

q

p2
⊥

, (6.23)

for gf radiation off the qq′i dipole where C = CF , and

D̂qq′
i
→qgiq̄′ =

1

Q2

û2 + t̂2 − 2ŝQ2

ût̂
=

x2
q̄′ + x2

q

Q2(1 − xq̄′)(1 − xq)
=

x2
q̄′ + x2

q

p2
⊥

, (6.24)

for gi radiation off the qq′i dipole with C = TR. For the definitions of the Mandelstam

variables etc., see eqs. (6.4) and the previous section.

The dipole matrix elements of the FI dipoles containing gluon(s) are calculated either

following the above procedure, or, alternatively, exploiting the crossing symmetry of the re-

spective FF dipole matrix element taken from the Lund CDM. This completely determines

the final-initial dipole splitting functions as introduced in eq. (3.25): for gf emissions,

Dfi→fgi(p⊥, y) =
fi(−xixB , µF)

fi(xB , µ̃F)
ξ{F

A}C{F
A}

|xf (p⊥, y)|nf + |xi(p⊥, y)|ni

x2
i (p⊥, y)

≤ NPDF ξ{F
A}C{F

A}
{

2

2(a + 1)

}

≡ Dapprox
fi→fgi(p⊥, y) ,

(6.25)

with the energy fractions as functions of p⊥ and y reading

xf,i(p⊥, y) = ±1 − p⊥
Q

e±y , (6.26)

14Note that the choice pi/gi
= −xi/gi

p̃i/qi = (−xi/gi
xB

√
S, 0,~0)

˛

˛

lab-f. is Lorentz invariant.
15Colour and spin final-state summed plus initial-state averaged squared matrix elements are e.g. given

in [77].
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and, for gi emissions (for antiquarks emitted into the final state),

Dfqi→fgiq̄(p⊥, y) =
fgi

(−xgi
xB, µF)

fqi
(xB , µ̃F)

TR

|xf (p⊥, y)|nf + x2
q̄(p⊥, y)

x2
gi
(p⊥, y)

≤ NPDF TR

{

1

max{2, a + 1}

}

≡ Dapprox
fqi→fgiq̄

(p⊥, y) ,

(6.27)

where the energy fractions are then given in terms of the evolution variables by

xf,q̄(p⊥, y) = 1 − p⊥
Q

e±y , such that xgi
(p⊥, y) = −2 p⊥

Q
cosh y . (6.28)

The modulus ensures that the terms in the rightmost numerator of the exact splittings

are positive definite. Additionally, the eikonal approximations are displayed, which again

overestimate the true form of the splitting functions.

As in the previous cases, the dipole splitting functions are finite, such that the diver-

gences are fully encapsulated in the 1/p2
⊥ term. For gluons emitted into the final state,

collinear/soft limits (t̂ → 0 or/and ŝ → 0) appear as before, where the (collinear) singular-

ities for gluons are again only fully accounted through the inclusion of the contributions of

the neighbouring dipoles (cf. the choice of ξ, ξ = ξA = 0.5).

If the gluon is radiated into the initial state, the incoming gluon may split collinearly

and, therefore, in singular domains w.r.t. both the emitted antiquark (t̂ → 0) and the

“other” final-state parton associated to the emission (û → 0), cf. eqs. (6.4). This is in

contrast to the situation of II dipoles where a collinear divergence cannot emerge between

the incoming gluon and the “other” parton, since in this case it belongs to the initial state.

Turning to the discussion of the soft infrared limit, the gluon gi itself cannot become soft,

since it is coupled to the initial state. Therefore, t̂ and û cannot vanish at the same time,

i.e. the soft limit is kinematically shielded, which is also clear from eqs. (6.9). In case a

soft antiquark is being emitted, a singular effect only occurs once it is also collinear with

the splitting gluon such that t̂ → 0 (the associated disappearance of ŝ is non-singular).

The colour factors are chosen similarly to the previous cases, with the same reservations

concerning the collinear limits. For FI dipoles, not only a final-state gluon emerging from

a quark-gluon dipole gives rise to the ambiguities, in this case, also the antiquark emission

into the final state induces them on the same level. This is related to the fact that this

splitting, as already mentioned, is singular when either the emitted antiquark (t̂ → 0) or

the “other” parton (û → 0) in the final state become collinear with the initial-state gluon,

cf. eqs. (6.4). The ambiguity here occurs when this “other” final-state parton is a gluon,

apparently resulting in a collinear splitting governed by CA rather than TR.

7. The complete shower algorithm

In this section the dipole-shower algorithm is presented, which models the full QCD radi-

ation picture in terms of initial-state, final-initial and final-state colour-dipoles on purely

perturbative grounds. This formulation of the shower aims at resumming effects at leading

logarithmic accuracy while producing exclusive final states of partons. These are gener-

ated in a Markovian process, iterating individual emissions. In analogy to conventional
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parton showers, a Sudakov form factor constitutes the central probabilistic quantity that

determines the full development of the cascade. This will be discussed first, before the

procedure of evaluating the evolution variables that characterize a single emission briefly

will be explained. Finally, the showering algorithm will be fixed by specifying its relevant

parameters and scale choices.

7.1 The Sudakov form factor

The evolution variables are given by the invariant transverse momentum p⊥ and the in-

variant rapidity y, defined in eqs. (3.11) and (3.12), respectively. Since the dipole splitting

functions D(p⊥, y), cf. eq. (3.14), are finite throughout, the entire singular structure of

each emission cross section in each case is incorporated as a term 1/p2
⊥. The concept of

“time” therefore is realized through p⊥, which thus operates as the (leading) variable or-

dering the emissions within the cascade. Consequently, y is considered as the associated

variable. Within the generic framework, cf. section 3, all emissions are treated on equal

footing, resulting in a competition between different available channels at each evolution

step. The Sudakov form factor is obtained from integrating the corresponding differential

single-emission cross sections dP
dp2

⊥dy
(which are positive definite) in suitable boundaries of

p⊥ and y. Summing over all allowed splitting channels {k̃ℓ̃ → kgℓ} and exponentiating the

negative result finally yields the Sudakov form factor:

∆(p2
⊥,stt, p

2
⊥) = exp











−
p2
⊥,stt
∫

p2
⊥

dp̃2
⊥

p̃2
⊥

I(p̃2
⊥)











, (7.1)

where

I(p2
⊥) =

αs[µR(p⊥)]

2π

∑

{k̃ℓ̃→kgℓ}

y+(p⊥, a)
∫

y−(p⊥, a)

dy Dk̃ℓ̃→kgℓ(p⊥, y) . (7.2)

In this form the Sudakov form factor resums the leading logarithms as encoded in the

dipole splittings to all orders, and, hence, can be interpreted as a no-branching proba-

bility. Accordingly, the two infrared divergent contributions of virtual and unresolvable

real emission cancel each other below the infrared cut-off leaving an overall finite result.

Thus, ∆(p2
⊥,stt, p

2
⊥) quantifies how likely a state consisting of a number of dipoles will not

emit any further resolvable parton between the start scale p2
⊥,stt and a lower (cut-off) scale

p2
⊥. The quantity µR denotes the renormalization scale in energy units for the evalua-

tion of the (running) strong coupling. Typically µR is given as a simple function of the

evolution variables to include some higher-order virtual contributions beyond the leading

logarithmic approximation [78, 79]. If reduced to the case of FF dipole evolution only, the

expression for the Sudakov form factor of course becomes equivalent to eq. (2.13) of the

Lund CDM. Note that in the more general case, the rapidity limits y± also depend on

the scaling quantity a, cf. eqs. (5.5) and (6.6), i.e. on the choice of the maximal available

phase space. Additionally, their actual functional form depends on the particular emission

channel. For notational brevity, this has been omitted, but is clear in view of eq. (4.9),
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eqs. (5.11), (5.18) and (6.13), (6.18). The presence of the PDF ratios in the I/FI splitting

kernels naturally yields a Sudakov form factor including these ratios. This resembles the

typical backward evolution treatment, where the ratio of parton densities ensures that the

parton composition of the hadron is properly reflected in each evolution step [9].

Finally, the actual differential probability (the probability density) for some branching

to occur at p2
⊥ then reads

dP

dp2
⊥

=
d∆(p2

⊥,stt, p
2
⊥)

dp2
⊥

=
I(p2

⊥)

p2
⊥

∆(p2
⊥,stt, p

2
⊥) . (7.3)

Subsequent emissions are ordered in p⊥, i.e. their start scale p2
⊥,stt is identical to the p2

⊥ of

the last parton radiation. This generates the Markov chain. Note that this still leaves the

initial starting scale — dubbed initializing scale — for the very first emission, p2
⊥,ini, to be

selected. The choices made here are detailed in section 7.3.

7.2 Generation of the emission’s Sudakov variables

In the model a valid pair of evolution variables is generated by exploiting the strict p⊥
ordering, which enables to treat any dipole and each of its emission channels separately.

Therefore, for each single channel, a trial (p2
⊥, y) pair is generated according to its proba-

bility density

dPk̃ℓ̃→kgℓ

dp2
⊥

=
αs[µR(p⊥)]

2π p2
⊥

y+(p⊥, a)
∫

y−(p⊥, a)

dy Dk̃ℓ̃→kgℓ(p⊥, y)

× exp











−
p2
⊥,stt
∫

p2
⊥

dp̃2
⊥

p̃2
⊥

αs[µR(p̃⊥)]

2π

y+(p̃⊥, a)
∫

y−(p̃⊥, a)

dy Dk̃ℓ̃→kgℓ(p̃⊥, y)











.

(7.4)

A valid (p2
⊥, y) pair generated according to the distribution eq. (7.3) is finally obtained by

iterating over all channels picking the one of largest p2
⊥ from the ensemble of all trial p2

⊥’s.

The procedure of selecting such a trial (p2
⊥, y) pair for a single dipole emission channel

follows the standard Monte Carlo technique (hit-or-miss method) of the veto algorithm [3]

exploiting that, for any given pair, the eikonal approximations gathered throughout sec-

tions 4.2, 5.2 and 6.2 overshoot the respective dipole splitting cross sections.16 Each of

which yields a fully integrable and invertible probability density, for which the (p2
⊥, y)

selection can be solved analytically using two random numbers. The respective simpler

density can be easily read off eq. (7.4) when replacing αs[µR], y± and Dk̃ℓ̃→kgℓ by a suffi-

ciently larger αmax
s , loose rapidity bounds Y± (overestimating the actual rapidity interval)

and approximate splitting functions Dapprox

k̃ℓ̃→kgℓ
, respectively. The correction to the true form

16Both forms are positive definite and describe differential cross sections. Therefore, employing them as

kernels in Sudakov exponentials will always yield Sudakov form factors smaller than one, such that these

form factors can be interpreted as all-orders expressions in leading logarithmic accuracy for emitting no

parton between two evolution scales.
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of the single-channel density is then achieved by accepting the trial pair with a probability

equal to the ratio (correction weight) reading

W =
αs(µR)

αmax
s

Dk̃ℓ̃→kgℓ

Dapprox

k̃ℓ̃→kgℓ

∆y(p⊥, a)

∆Y (p⊥, a)
. (7.5)

However, there are additional kinematical constraints, such as the demand for valid

momentum fractions x± ≤ 1 in II dipole evolution, see section 5.1.3; once violated, they

translate into rejection of the trial emission, implying the generation of a new trial emission

for the considered channel, starting over from the rejected p⊥ value.

Note that the PDF-ratio overestimations, NPDF, present in the approximate I/FI split-

ting functions are taken from a dynamically self-adapting table in order to improve the

generation efficiency. The last term of above equation exhibits the correction for the exact

rapidity interval, where ∆y = y+ − y− and ∆Y = Y+ − Y−.

7.3 Scale choices, starting conditions and iteration principles

Finally, the remaining free scale choices are fixed. This completely defines the (default)

cascade-generating algorithm of this shower model.

Renormalization scales:

µ2
R

∣

∣

∣

FF
=

p2
⊥

2
and µ2

R

∣

∣

∣

∣ I/FI
=

p2
⊥

2 cosh2 y
≤ p2

⊥

2
(7.6)

are used for the argument of the running strong coupling, where an offset of O(1 GeV)

ensures that the evolution proceeds well above the Landau pole ΛQCD. Empirical studies

have shown that the use of the modified (reduced) p2
⊥ scale in the latter cases leads to

overall better results. Therefore, it is the default setting of this work, and may still be

understood as a transverse-momentum scale:

If the 1 → 2 branching i → jg is considered, its squared transverse momentum can

be found as κ2
⊥ =

p+,g

p+,i
m2

j =
p+,g

p+,i
|sgi| using light-cone variables and assuming that the

incoming (massless) parton i moves along the +ẑ axis. The plus-component fraction may

then be treated as a weight, such that µ2
R

∣

∣

∣ I/FI may be interpreted as a “mean” of transverse

momenta of 1 → 2 branchings: µ2
R

∣

∣

∣ I/FI = wkg|skg|wgℓ|sgℓ|. The weights are determined

by fractions of squared two-particle masses of the partons partaking in the emission:

wkg,gℓ =

√
2

|M |
|skg,gℓ|

|skg| + |sgℓ|
=

√
2

|M |
1

1 + e±2y
. (7.7)

Factorization scales: for a new (trial) emission µF is calculated according to

µ2
F = (4 k2

⊥)d/2 µ̃F
2−d , (7.8)

where d = 1 and d = 2 are employed for II and FI dipoles, respectively. The modified

transverse momentum squared, k2
⊥, is computed from the emission’s p2

⊥ and y and the

mass of the parent dipole. Based on eq. (5.24) k2
⊥ is frame-independently defined as

k2
⊥ =

|skg sgℓ|
|skgℓ| + |skg| + |sgℓ|

=
|M | p2

⊥

|M | + 2 p⊥ cosh y
, (7.9)
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and intended to function as a more natural scale for the argument of the parton densities,

since it better compares to the lab-frame squared transverse momentum. The respective

old factorization scales associated with the state before the emission are encoded in the µ̃F

values, whereas, for the very initial case, µ̃F,ini is adopted from the hard process.

Initializing scales: the subsequent cascading off the core process starts at the hardest

scale, p2
⊥ = p2

⊥,ini, which cannot be set independently of the underlying process. Generally

it should guarantee that the shower strictly evolves in the soft and collinear phase-space

regions only. Here, the following choices are made for three different scenarios of hard

2 → 2 processes:

• Showering off a single qq̄ dipole as in e+e− → qq̄ processes: the start scale is set by

the squared mass of the parent dipole, p2
⊥,ini

∣

∣

∣ qq̄-prod. = ŝ0 = M2.

• Showering off a single q̄iq
′
i dipole as in Drell-Yan processes: here, a p⊥,ini estimate is

gained by inverting eq. (7.9) for y = 0, which yields

p⊥,ini

∣

∣

∣

DY
= k⊥,max





k⊥,max

M
+

√

k2
⊥,max

M2
+ 1



 , (7.10)

and gives p⊥,ini

∣

∣

DY = (1 +
√

2)M , provided that k2
⊥,max = ŝ0 = M2. For the

same reason as in the previous item, this estimate is found by restricting the true

transverse momentum of final-state gluons radiated off q̄iq
′
i dipoles, cf. eq. (5.24). For

vector boson production, in this model, the first emission is matrix-element corrected

per construction. Therefore, the restricted scale may be discarded, the shower may

instead evolve freely with the initializing scale set as largely as kinematically allowed.

• Showering off a multi-dipole state as in pure QCD jet production: recalling the defini-

tion p2
⊥ = |skg sgℓ|/|skgℓ|, all possible combinations for this fraction can be calculated

using the strong particles provided by the hard process. The combination yielding

the lowest p2
⊥ should represent a sufficient estimate for the initializing scale. Applied

to QCD jet production, the minimal numerator is given by min{ût̂, ŝt̂, ŝû} employing

the Mandelstam variables of the 2 → 2 QCD core process. For the denominators, a

mean squared mass proportional to (ŝ+ |t̂|+ |û|) = 2 ŝ is used replacing the vanishing

|skgℓ|. Taken together,

p2
⊥,ini

∣

∣

∣

Jets
=

f2
const

2

min{û t̂, ŝ t̂, ŝ û}
ŝ

(7.11)

is employed with the disadvantage that fconst is left as a free parameter to be de-

termined by comparing the shower predictions with suitable data for pure QCD jet

production.

The assignment of large NC colour flows is straightforward and unique for the first

two examples. In the latter case, the most likely flow among the possible ones for a given

set of partons will be determined by the actual kinematical configuration of the QCD
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2 → 2 core process. This is essentially accomplished by following the method described

in [80] and implemented in Pythia. Partial cross sections depending on the Mandelstam

variables ŝ, t̂ and û can be calculated and used as weights for the possible colour flows

of a particular QCD 2 → 2 process. The colour flow of a given momentum configuration

can be fixed according to these weights, and hence determines the formation of the initial

dipoles. For example, in a gg → gg (12 → 34) scattering there are three main colour

configurations, symbolically: 1 − 2 − 3 − 4 − 1, 1 − 2 − 4 − 3 − 1 and 1 − 3 − 2 − 4 − 1.

The weights proportonial to their respective cross sections read 1+ û2/(ŝt̂)− ŝû/t̂2− t̂û/ŝ2,

1+ t̂2/(ŝû)−ŝt̂/û2− t̂û/ŝ2 and 1+ŝ2/(t̂û)−ŝt̂/û2−ŝû/t̂2, given the Mandelstam variables of

the 2 → 2 scattering. According to these weights the colour flow is dynamically set, and the

initial dipole configuration is determined: for the first two flows, one II, one FF dipole and

two FI dipoles are found, whereas, for the third flow, the shower starts off four FI dipoles.

Maximal phase space: for II and FI dipole regimes, the limits on the evolution variables

vary with the choices of the ŝmax parameters restricting the phase space of a single emission

for decreasing ŝmax values, cf. eqs. (5.5) and (6.6). The default settings impose no extra

restrictions, they hence are ŝmax

∣

∣

II = S (see section 5.1) and ŝmax

∣

∣

FI = S (see section 6.1)

and allow full access to the centre-of-mass energy as given by the collider.

Cascading: each chain (colour-singlet), once appeared, is independently evolved, with

the only potential exception of recoil transfer from an II splitting. This does not spoil

the further evolution of the corrected chain owing to the Lorentz invariance of the shower

formulation. Starting off p2
⊥,ini consecutive emissions are decreasingly ordered in p2

⊥ within

a chain. The dipole splitting that generated the largest p2
⊥ in a certain evolution step is

finalized in its kinematics, its p2
⊥ is used as the new start scale for the trial emissions of

the next round. The procedure continues until the infrared cut-off has been reached.

Cut-off and hadronization aspects: the cut-off is always taken on p2
⊥, hence denoted

by p2
⊥,cut. With a prescription avoiding the Landau pole in αs, it can, in principle, be

chosen arbitrarily small, since then the setting of the renormalization scale is safe and the

Sudakov suppression quenches the appearing soft and collinear divergences.

After the cascading is finished, the interface to the hadronization — currently described

through phenomenological models only — does not require any special treatment inside

the shower. The conversion of the shower partons into primary hadrons proceeds similarly

to the case of conventional parton cascades.

8. First results

In this section, the newly developed dipole shower is validated by comparing its predictions

of QCD dynamics to data and other Monte Carlo calculations. To this end, the following

physics processes are studied:

• the production of vector bosons and their subsequent hadronic decays in e+e− colli-

sions at LEP1 energies,
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• the inclusive production of Drell-Yan e+e− pairs at Tevatron and LHC energies, and,

• the inclusive QCD production of jets at Tevatron energies.

The shower model presented here has been implemented into the event generator Sherpa,

and supplemented by an interface to the Lund string fragmentation routines of Pythia

6.2 [3], which are provided by the Sherpa framework. Cascading starts off the corre-

sponding hard 2 → 2 processes, which are generated inside Sherpa utilizing its facilities

of evaluating matrix elements. Only light-quark flavours, i.e. massless quarks, are consid-

ered. For the simulation of hadronic collisions, all predictions have been obtained from

the CTEQ6L set of PDFs [81]. In accordance with the choice in the PDF, the strong cou-

pling constant has been fixed by αs(MZ) = 0.118 and its running is taken at the two-loop

level. The dipole-shower cut-offs related to final-initial and initial-initial dipole evolution

are both set to 1GeV, i.e. p2
⊥,cut

∣

∣

FI = p2
⊥,cut

∣

∣

II = 1 GeV2. In contrast, p2
⊥,cut

∣

∣

FF is tuned

by hand together with the Lund string model parameters.

The lower panel in each of the plots presented below visualizes the

(MC−reference)/reference ratio, where the “reference” (ref) is given by the data as

long as they are available. The bright band always illustrates the uncertainty of the

respective measurement.

8.1 Hadron production in electron-positron collisions

The testbed to exclusively validate the performance of the sole final-state piece of the dipole-

shower model17 is the process e+e− → Z0/γ∗ → hadrons, where the qq̄ pair produced in the

hard process will initiate the cascade. The QCD Monte Carlo predictions can be compared

with large sets of data, which, for example, are available from the LEP1 measurements.

The data precisely test the QCD dynamics of hadronic final states produced at the Z0 pole.

The parameters of the shower and the hadronization model were tuned by hand, i.e. the

value taken for the strong coupling at MZ was specified, the FF cut-off p2
⊥,cut

∣

∣

FF of the

dipole shower was adjusted, and, suitable values for the Lund string model parameters a

(PARP(41)), b (PARP(42)) and σq (PARP(21)) were found. The method employed for that

is sufficient to yield first significant results. However, it cannot be compared to the effort

of delicate Monte Carlo tuning procedures as presented in [83] and foreseen in [84] in order

to automatize the procedure. The “naively” tuned parameters read:

αs(MZ) = 0.1254 ,

p2
⊥,cut

∣

∣

∣

FF
= 0.54 GeV2 , (8.1)

a = 0.29 , b = 0.76 GeV−2 , and σq = 0.36 GeV .

Since massive quarks are not handled yet, the dipole shower always started off massless

qq̄ pairs. At S = M2
Z a mean parton multiplicity of 〈Nparton〉 = 9.24 and a mean

charged-particle multiplicity of 〈Nch〉 = 20.47 are found, where the latter is somewhat

17Note that, for pure final-state cascading, the splitting of gluons into quark-antiquark pairs already has

been included, and the implementation is nearly identical to the treatment proposed in the Lund CDM.
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Figure 10: Durham differential jet rates as a function of the jet-resolution parameter ycut; dipole-

shower prediction vs. Delphi data taken from [82]. Here, the light-coloured band represents the

sum of the statistical and systematic errors.

below the experimentally detected value of 〈Nch〉 = 20.92 ± 0.24 [22]. Figures 10 and 11

show a selection of distributions obtained with the dipole shower and compared to

Delphi data taken at
√

S = 91.2 GeV during the LEP1 run. In figure 10, Durham

differential jet rates, Yn→n+1, are presented up to Y5→6. They disentangle at which values

of ycut = 2min{E2
i , E2

j }(1 − cos θij)/S an n + 1 jet event is merged into an n jet event

according to the Durham jet clustering scheme [85]. The agreement with the data taken

by the Delphi experiment [82] is very good, in particular the description around the peak

positions. All predictions tend to be somewhat below the bin means for low and high

values of the jet-resolution parameter ycut.

Event shape variables probe the pattern of QCD radiation for both soft and hard

emissions arising from the primary qq̄ dipole. Therefore, in figure 11, the charged-particle

shape distributions of 1−thrust, 1− T , thrust major, Tmajor, and thrust minor, Tminor, are
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Figure 11: The dipole-shower predictions for the event shapes 1−thrust, sphericity, thrust major

and thrust minor vs. Delphi data [22]. Again, the light-coloured band represents the sum of the

statistical and systematic errors.

displayed together with the sphericity, S, placed in the top right corner of the figure. The

former are all obtained from a linear momentum tensor, whereas the latter stems from a

quadratic one, thus, puts more emphasis on high momenta. All dipole-shower results are

compared, once again, to Delphi data [22]. The low-value parts, which are sensitive to

soft emissions, are all quite well described, except for larger deviations in thrust major and

minor. Differences in these observables also appear, even somewhat larger, for instance for

the new shower of Herwig++ [27] and the new shower presented in [36] based on Catani-

Seymour dipole factorization. For a very recent comparison, please cf. [86], where the value

of the strong coupling constant has been determined at the Z0 pole using the results from

a first next-to-next-to-leading order (NNLO) calculation for e+e− → 3 jets [87]. Although

the soft parts of these distributions are all affected by hadronization corrections and their

careful modelling and tuning, the good behaviour of the dipole shower in describing soft
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Figure 12: Comparison of predictions for the all-particle 1−thrust event-shape distribution at

LEP1 and TeV energies; black and green lines represent theoretical results at N3LL+NNLO and

NLL accuracy, respectively, both of which taken from [88], red and blue histograms show the dipole-

shower results with and without hadronization corrections, respectively.

emissions can be seen as a consequence of exponentiating the eikonal rather than the

collinear limit of QCD radiation. The predictions for hard emissions agree somewhat worse

with the data. The last two bins of the 1−thrust distribution are overestimated signalling

a slight excess of spherical events, whereas thrust minor is underestimated for high values.

Recently Becher and Schwartz — using soft-collinear effective theory — calculated the

all-particle 1−thrust distribution at next-to-next-to-next-to-leading logarithmic (N3LL)

accuracy [88]. They also matched their resummed result to the fixed-order prediction at

NNLO [89, 87]. Figure 12 shows the comparison of their result with the parton-level predic-

tion of the dipole shower. This provides an independent stringent test of the resummation

(perturbative expansion) encoded in the dipole shower Monte Carlo without relying on

hadronization corrections. The agreement with the N3LL+NNLO curve is remarkable and

considerably better w.r.t. the prediction given by the NLL resummation, also depicted in

figure 12. The good behaviour persists at large centre-of-mass energies (see second panel

of figure 12). Interestingly, the agreement found here is better than that found when

comparing the analytic results to Pythia [88].

The plots also visualize the hadronization corrections to the perturbative dipole-shower

prediction, which have the expected characteristics. They shift the distribution to larger 1−
T values, and become less important for smaller thrust and higher centre-of-mass energies.

Taken together, the agreement with data and the comparison to the analytic resum-

mation calculation of [88] is satisfactory. This allows to conclude that the final-state piece

of the dipole shower is well under control.

8.2 Inclusive production of Drell-Yan lepton pairs at hadron colliders

In the scope of hadronic collisions, the processes pp(pp̄) → Z0/γ∗ → e+e− constitute the

simplest and cleanest testbed for the further validation of the dipole shower as they form
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Figure 13: Boson transverse-momentum distribution in e+e− + X as predicted by the dipole

shower for two different choices concerning the initializing scale. The Monte Carlo calculations

are compared with CDF data [90] taken during Run I at the Fermilab Tevatron. The right panel

depicts the very soft region of the distribution only.

the initial-initial dipole counterpart of the qq̄ timelike evolution.

Tevatron Run I predictions. The transverse-momentum distribution of the lepton pair

is heavily influenced by additional QCD radiation arising in both soft and hard phase-space

domains. Owing to its clear signal, this spectrum has been measured with high precision

by the Tevatron experiments. It is shown in figure 13 for lepton-pair invariant masses

in the range 66 GeV < Mee < 116 GeV. Two hadron-level predictions produced by the

dipole shower are confronted with data from a CDF measurement at
√

S = 1.8 TeV [90]

and normalized to the experimental inclusive cross section. They differ in their choice

of the initializing scale, using, first, p⊥,ini = (1 +
√

2)Mee and, second, p⊥,ini = p⊥,max

(cf. eqs. (5.12) and (5.20)). In the latter case the shower evolves totally unconstrained,

exploiting the fact that the first emission is corrected for the true matrix element by

construction and may hence appear at a scale exceeding Mee. This in turn sets the highest

scale for all consecutive emissions. The whole treatment eventually leads to good agreement

with the data for large pT . In contrast, the dipole shower with restricted initializing

scale gradually undershoots data above pT = 60 GeV before it dies off rapidly around

pT = 80 GeV.

The figure’s right part contains a close-up of the peak region on a linear scale, almost

identically predicted by both dipole-shower variants. The turn-on of the distribution is

well described. Around the peak, narrower described by the data, a slight excess is found,

followed by an underestimation of the data for the region above 12 GeV. The predictions

include an intrinsic transverse-momentum smearing for very low pT , which has been tuned
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Figure 14: Rapidity spectrum of the vector bosons in inclusive Z0/γ∗ production at Tevatron

Run II energies of
√

S = 1.96TeV as predicted by Sherpa and the dipole shower in comparison to

recent DØ data [91]. The grey solid, the black dashed, the green dashed and the red solid lines give

the Sherpa CKKW nME = 1, CKKW nME = 2, the default and the unconstrained dipole-shower

predictions, respectively.

by hand to these low pT data according to a Gaussian with mean(width) of 0.3(0.4) GeV.18

Without this correction the shower pT spectra would slightly shift to the left.

Tevatron Run II predictions. One more validation against data is presented by con-

sidering the rapidity distribution of the decaying vector boson, where the Drell-Yan lepton-

pair mass has been restricted to the interval 71 GeV < Mee < 111 GeV. The QCD NNLO

theoretical prediction for this inclusive observable has been calculated in [92] and very good

agreement with data from a recent DØ measurement [91] has been observed over the full

rapidity range.

18The assignment of an intrinsic transverse momentum to the hard process is a non-perturbative correction

applied after the shower phase, and, therefore, irrelevant for shower kinematics.
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Figure 15: Left panel: impact of standard scale variations on the shower evolution exemplified

by means of the pT,e distribution. Here, the blue lines reflect the uncertainty of the prediction

stemming from the unconstrained shower, which in both panels is given by the red solid line. Right

panel: impact of the Kleiss correction on the transverse-momentum distribution of the electron.

Here, the blue dashed and the grey dotted lines denote the outcomes of the unconstrained dipole

shower neglecting Kleiss corrections and of the CKKW nME = 1 merging procedure of Sherpa,

respectively. Both panels depict shower-level (SL) results (lacking hadronization corrections).

Here, hadron-level predictions are presented that have been obtained from the un-

constrained dipole shower — denoted by “Dipole shower, max” in the plots from now —

as well as from the p⊥,ini restricted dipole shower, which is taken as the default, since the

matrix-element correction of the first emissions does not apply beyond Drell-Yan processes.

The comparison also shows Sherpa outcomes resulting from the CKKW merging of parton

showers and tree-level matrix elements up to nME extra partons. This merging method has

been validated in many other comparative studies [53, 93, 94, 64] or even to data [95]. Here,

two such inclusive samples, for nME = 1 and nME = 2, were generated with Sherpa using

version 1.0.10. All results are displayed in figure 14 and confronted with the DØ data [91].

There hardly are any shape differences visible between the various Monte Carlo predictions.

This nicely confirms that the II dipole kinematics is eventually well fixed by preserving the

rapidity of the final-state particles, cf. section 5.1.3. However, compared to data, all Monte

Carlo shapes are somewhat wider showing an excess of up to 20% for large rapidities.

A rough estimate for the uncertainty of the shower predictions can be gained from

varying the values taken for the µF and µR scales within the shower algorithm. To this end,

their defaults were multiplied/divided by 2. The µF scale enters through the PDF weight,

and µR as the scale of the running strong coupling in the single-emission probabilities,

cf. section 7.2. The results of this variation procedure are exemplified in the left plot

of figure 15 for the pT,e distribution, where the uncertainty band for the unconstrained

(intrinsically first-order matrix-element corrected) dipole shower is shown to cover the
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Figure 16: Pseudo-rapidity spectrum (left) and pT distribution of the lepton pair in inclusive

Z0/γ∗+jets production at the LHC. The comparison is at the hadron level between the uncon-

strained dipole shower (green solid lines) and various Sherpa results, namely CKKW nME = 1

(grey solid lines), taken as the reference curve, CKKW nME = 2 (black dashed lines), CKKW

nME = 3 (red dotted lines) and Apacic++ (blue dot-dashed lines).

same-order-of-accuracy prediction stemming from CKKW Z0 + 1 jet merging. Therefore,

both descriptions are in good agreement.

The right part of figure 15 is the verification for the importance of the Kleiss correc-

tions for emissions off q̄′iqi dipoles. Their application yields a hardening and, therefore, an

improvement of the single-lepton pT,e spectrum of about 20%. Sherpa CKKW nME = 1

again serves as a good reference, since it accounts for the full first-order lepton-hadron

correlations.

LHC predictions. The correct energy extrapolation of the dipole shower is verified

by comparing various approaches at LHC centre-of-mass energies. Therefore, the uncon-

strained dipole shower is studied w.r.t. Sherpa’s CKKW merging for nME = 1, 2, 3 and

Sherpa’s pure showering realized by Apacic++ [96, 14], which is a virtuality-ordered

parton shower in the traditional sense resumming large logarithms in the collinear rather

than the soft limit of QCD radiation.

Most of the observables presented here require the exclusive definition of jets, which

has been attained according to the Run II kT algorithm [97, 98] using the parameter

D = 1 and an unconstrained η range in order to include forward-jet effects. The jet

pT threshold is given by pT,jet > 20 GeV. All distributions are simulated at the hadron

level and normalized to unit area, which allows for direct shape comparisons. Many plots

show CKKW predictions for nME > 1, which helps estimate the impact of describing the

next-to-first extra parton emission by matrix elements as well.

The pseudo-rapidity and pT distributions of the e+e− pairs are shown in figure 16.
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Figure 17: Pseudo-rapidity (left column) and transverse-momentum (right column) distributions

of the first three jets in inclusive lepton-pair production simulated for LHC energies. Dipole-shower

results are shown in comparison to those obtained by the CKKW method of Sherpa. Labelling is

as in figure 16.
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They are largely determined by the pattern of QCD emissions, in particular by the hard-

est one, and measure the recoil of the lepton pair against all other final-state particles.

Hence, these inclusive observables are first defined beyond the leading order Drell-Yan pair

production process. For the ηee spectrum shown in the left panel, the maxima and the

central rapidity region respectively are somewhat more and less pronounced by the dipole-

shower than by the CKKW predictions. As it can be seen, the improved description of

second-order emissions results in a further enhancement of vector bosons that are central

in η space. In contrast, the Apacic++ prediction features a considerably larger dip in the

central pseudo-rapidity region as a consequence of lacking sufficiently hard emissions, since

this shower’s start scale is constrained by the mass of the lepton pair to ensure evolving

in the collinear and soft phase-space regions only. The right part of figure 16 contains

the pT,ee distribution on a double-logarithmic scale to provide good insight to both soft

and hard pT domains. In the hard tail the dipole-shower result is 30% below the CKKW

reference; the difference in the low pT part amounts up to 40%, whereas the dipole shower

clearly puts emphasis on the soft region and predicts a slightly lower peak position. The

agreement is still satisfactory and the deviations can be traced back, for the very soft part,

to different parameter settings for the fragmentation of the partons (including intrinsic kT

smearing), for the range 1 GeV < pT < 20 GeV, to different radiation patterns generated

by the dipole shower and the vetoed Apacic++ shower used for the CKKW merging, and,

for the high pT tail, to differences in choosing and processing the scales in both approaches.

Typically, the inclusion of next-to-one extra parton emissions at the matrix-element level

leads to a further increase of the high pT tail. This is found in figure 16 where the effects

can become as large as 40%.

Figure 17 presents the jet pseudo-rapidity, ηi, and transverse-momentum, pT,i, distri-

butions of the first three jets. These observables directly probe the jet structure of the

events. For ηi, the dipole-shower predictions are quite similar and in all cases narrower

w.r.t. the Sherpa CKKW predictions. For pT,i, the predictions of the unconstrained dipole

evolution agree quite well with the respective ones of Sherpa CKKW nME = 1, again on a

20%–40% level, confirming that the scale setting by the first (the unconstrained) emission

reasonably constrains the subsequent one. The pT hardness of the jets predicted by the

inclusive two- and three-jet merging is of course out of reach for the dipole shower. Such

higher-order corrections can only be included by matrix-element parton-shower merging

techniques or a matching with respective NLO calculations.

The top left plot in figure 18 depicts the vector boson rapidity spectrum obtained

under the additional requirement that the first and the second jet appear well separated in

rapidity according to y1y2 < −2. Except for Apacic++ predicting a strong tendency of

the boson to accompany one of the jets, all codes give flat spectra for central rapidities, and,

remarkably, the dipole-shower result agrees well with that of Sherpa CKKW nME = 2. A

similar pattern is found in the |∆ηee,1| = |ηee−η1| distribution shown in the top right plot of

figure 18. The dipole-shower curve hardly deviates from the CKKW curves, which reliably

describe this observable owing to their higher-order contributions. This tellingly high-

lights the effects of the improvements of the dipole splitting functions beyond the eikonal

approximation. In contrast, Apacic++ describes a suppression for low |∆ηee,1| values.
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Figure 18: The rapidity of the lepton pair for the first two jets satisfying y1y2 < −2 (top left)

and the modulus of the pseudo-rapidity difference between the vector boson and the leading jet

(top right). Both of which is simulated for inclusive Drell-Yan e+e− production at the LHC. The

dipole-shower outcome is compared to those received from various Sherpa runs. Labelling is as

introduced in figure 16. The bottom plots exemplify the impact of the choice of ŝmax on the yee

for y1y2 < −2 and cos θ13 distributions as predicted by the unconstrained (solid green curves),

the default (dashed blue curves) and the dipole shower where ŝmax is set dynamically (dotted red

curves). The cosine of the angle between the first and the third jet, cos θ13, is determined in the

rest frame of the first-plus-second jet system.

Supplementary to the shape comparisons above, table 2 provides some insight con-

cerning inclusive and exclusive jet rates normalized to the total inclusive cross section.

The results given by the unconstrained dipole shower are close to those of Sherpa CKKW

nME = 1. Moreover, it is also found that the default dipole shower predicts much more

soft jets compared to Apacic++.
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Monte Carlo
σ≥1jet

σtot

σ≥2jet

σtot

σ≥3jet

σtot

σ=1jet

σtot

σ(y1y2<−2)

σtot

CKKW nME = 1 0.304 0.082 0.017 0.222 0.016

CKKW nME = 2 0.340 0.108 0.025 0.231 0.017

CKKW nME = 3 0.348 0.119 0.034 0.229 0.018

Apacic++ 0.232 0.048 0.007 0.157 0.010

Dipole shower, max 0.290 0.084 0.023 0.207 0.012

Dipole shower, max (SL) 0.296 0.087 0.024 0.210 0.013

Dipole shower (SL) 0.267 0.068 0.016 0.199 0.011

Dipole shower, dyn (SL) 0.244 0.052 0.009 0.193 0.0003

Table 2: Cross section ratios as obtained from the various Monte Carlo approaches for inclusive

and exclusive (hadron- and shower-level “SL”) jet rates at LHC energies. Jets are defined according

to the Run II kT algorithm [97, 98] and required to have pT,jet > 20GeV.

The large phase space available for additional QCD radiation at the LHC will lead to

the copious production of jets. Here, this testbed provides an excellent means to study the

effects of the ŝmax reduction (see section 7.3). In table 2 and the bottom row of figure 18

various predictions are confronted with each other, namely those of the unconstrained

dipole shower, the default shower where p2
⊥,ini = (1 +

√
2)2M2

ee and the dipole shower

denoted by “dyn” where additionally ŝmax is set dynamically according to p2
⊥,max = p2

⊥,ini =

(1 +
√

2)2M2
ee (cf. e.g. eqs. (5.12) and (5.20) in sections 5.1.1 and 5.1.2, respectively). The

default shower loses hard emissions, such that the ratios of table 2 are somewhat smaller

w.r.t. those of the unconstrained shower. For the “dyn” variant, the normalized cross

sections decrease further, however, dramatically fall if a rapidity separation for the first two

jets is required and imposed by y1y2 < −2. Furthermore, while the spectra presented at the

bottom of figure 18 show only mild differences between the unconstrained and the default

shower, the predictions of the “dyn” shower deviate considerably: the yee spectrum for

y1y2 < −2 is far too peaked in the central y region, which also contradicts the performance

of the CKKW references shown in the top left corner of the same figure. And, in the

cos θ13 distribution of figure 18 the third jet is significantly less collinear w.r.t. the first

and second jet, where the angle θ13 between the first and third jet is taken in the rest

frame of the combined first and second jet. Hence, in all examples, the ŝmax reduction

manifests in a suppression of forward and larger separated emissions (jets), which can be

understood, since, firstly, the p2
⊥,max act as kinematic upper bounds to all start scales

p2
⊥,stt, in particular initializing scales p2

⊥,ini. Secondly, for reduced ŝmax, the generation

of large |y| is suppressed for a single emission, eventually avoiding the production of sets
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of two-parton invariant masses, |skg| = |M | p⊥e−y and |sgℓ| = |M | p⊥e+y, where one of

them is very small and the other very large. Taken these findings together — also recalling

the good agreement with the CKKW results — it is evident that using ŝmax

∣

∣

II = S and

ŝmax

∣

∣

FI = S is a good choice.

8.3 Inclusive jet production at hadron colliders

The copious QCD production of jets is a typical and large phenomenon at hadron colliders,

however, from a theoretical point of view, the task of calculating and/or simulating these

processes at higher orders in the strong coupling is more complicated and rather involved.

Clearly, QCD jet production severely tests the entire shower algorithm and goes beyond

the tasks handled by the dipole shower so far. There are several reasons for this: the

primary state is now given as a multi-dipole configuration formed by the 2 → 2 hard QCD

processes according to their (large NC) colour connections, including those that link initial-

and final-state partons. Possibly, all dipoles form only one colour singlet or even a “gluonic

ring”. Matrix-element corrections for the first extra emission in jet production are absent

in the dipole splitting functions; this in turn requires to carefully constrain the initializing

scale, such that the shower evolution is guaranteed to proceed in the soft and collinear

limits of QCD emission only.

To validate the dipole shower the observables listed below have been considered in

more detail.

Dijet azimuthal decorrelations at Tevatron Run II energies. The dijet-

decorrelation observable measured in the transverse plane between the two hardest jets,

∆φdijet = |φ1−φ2|, provides good insight to the occurrence of additional soft and hard radi-

ation. There is no necessity to reconstruct further jets. The clear full-correlation signature

given by ∆φdijet = π washes out in the presence of extra emissions. Since, the strength of

the decorrelation rises in dependence on their hardness, this dijet observable can be well

used to verify any candidate choice of setting the initializing scale.19 Hence, by comparing

dipole-shower predictions with these data, the factor fconst appearing in eq. (7.11) can be

fixed for the model presented here.

The observable was subject of a recent measurement by DØ at Tevatron Run II with

the data taken in different pT,1 = pT,max windows of the leading jet [99]. The details of the

analysis are:

• Reconstruct cone jets for R = 0.7,

• require pT,2 > 40 GeV, and,

• require central jet rapidities, |y1,2| < 0.5.

Figure 19 shows the data overlaid with predictions for various choices of the initializing

scale: besides the default given in eq. (7.11), two alternatives have been implemented,

19Showers preferably should predict the distribution for a small decrease of ∆φdijet = π, the tail may be

corrected by the inclusion of matrix elements beyond order α2
s.
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Figure 19: The dijet azimuthal decorrelations in different pT,max ranges. Dipole-shower results

for different choices of the initializing scale are overlaid by data taken by DØ during Tevatron Run

II [99].

namely a geometric mean reading

p2
⊥,ini

∣

∣

∣

Jets
= 3 µ2

QCD = 3
2 ŝ t̂ û

ŝ2 + t̂2 + û2
, (8.2)

and a more enhanced scale defined as

p2
⊥,ini

∣

∣

∣

Jets
= (1 +

√
2)2

û t̂

ŝ
, (8.3)

using the Mandelstam variables of the core process. The scale denoted by “II sc.” is taken

according to the latter equation, eq. (8.3); this one denoted by “QCD sc.” corresponds

to eq. (8.2), and that one marked as “low default sc.” follows from eq. (7.11) employing
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Figure 20: The dijet mass spectrum as measured by DØ during Tevatron Run I [100] compared

with the prediction of the dipole shower initialized at scales according to eq. (7.11) and for no

phase-space restriction, i.e. using the default ŝmax settings.

fconst =
√

3 instead of the default setting fconst = 3. Obviously, the dipole shower initiated

through the low default scale does not account for enough hard emissions and overshoots

for soft ones. The other predictions are quite similar, with the “II sc.” and “QCD sc.”

variants giving slightly harder and softer results w.r.t. the default case, respectively. The

run according to the default setting, i.e. using eq. (7.11) with fconst = 3, performs best

and its initializing-scale treatment will therefore be employed in all what follows. Its

predictions still tend to undershoot the data around ∆φdijet = 2.8 in all pT,max windows

of the leading jet, however, keeping in mind that some gluon splitting processes have not

been fully taken into account yet, the agreement is satisfactory giving evidence that also

other model-intrinsic scales, such as µ̃F, µF and µR, have been chosen reasonably.

Dijet mass spectrum at Tevatron Run II energies. With the p⊥,ini finding in hand,

the dipole-shower prediction for the dijet mass spectrum is confronted with data measured
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Figure 21: Colour-coherence tests in inclusive three-jet production at Tevatron Run I energies

according to a CDF study presented in [101]: (left panel) pseudo-rapidity distribution of the third

jet and (right panel) the angle α (defined in the text). Experimental errors are statistical only

and the histograms are normalized to their respective binwidth. For the latter three observables,

dipole-shower (shower-level) predictions under full (blue solid lines) and restricted (black dashed

lines) emission phase space are shown in comparison with the (detector-level) data of the CDF

measurement [101].

during Run I by the DØ collaboration [100]. The analysis requires:

• The reconstruction of jets using a cone algorithm with R = 0.7,

• jet transverse energies above 30 GeV, and,

• the dijet candidates to satisfy |η1,2| < 1.0.

As it can be read off figure 20, the comparison versus data with the dipole-shower

results being normalized to the cross section observed in the experiment shows encouraging

agreement.

Test of colour coherence at Tevatron Run I energies. An interesting measurement

and analysis was carried out by the CDF collaboration during Tevatron Run I, searching

for evidence for colour coherence in pp̄ collisions at
√

S = 1.8 TeV [101]. Discriminatory

observables were found for three-jet events featuring a hard leading jet and a rather soft

third jet. They were shown to be sensitive to the correct treatment of QCD colour coherence

in parton shower simulations. Here, similarly to the treatment in [36], this CDF analysis

is used to test whether the proposed dipole shower is capable of describing the colour-

coherence effects seen in the data.20 The requirements of the CDF study read:

20Evolving in terms of colour dipoles is said to automatically account for soft colour coherence owing

to the eikonal structure of the dipole splitting cross sections, however, the colour-factor ambiguities for
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• Jets are defined through a cone algorithm, using R = 0.7,

• the two leading jets are constrained to |η1,2| < 0.7,

• they have to be oriented back-to-back within 20 degrees, i.e. |φ1 − φ2| > 2.79,

• jet ET thresholds have to be respected for the first jet and all next-to-first jets of

110 GeV and 10 GeV, respectively, and,

• for the α angle only, a cut on ∆R23 =
√

(η2 − η3)2 + (φ2 − φ3)2 has to be imposed,

namely 1.1 < ∆R23 < π.

• The angle α is defined through

tan α =
sign(η2)(η3 − η2)

|φ3 − φ2|
. (8.4)

In figure 21 the comparison between detector-level data and dipole-shower predictions

obtained at the shower level is shown for the η3 and angle α distributions. As pointed

out in [101], these two observables receive small detector corrections only, which is not

the case for the ∆R23 separation of the second and third hardest jet in (η, φ) space. The

latter is known to be strongly affected by detector effects, therefore, not considered here.21

If colour-coherence effects are modelled correctly, η3 should arise broader and feature a

significant dip for central values. The α spectrum should be minimal for small |α| followed

by a clear rise towards larger positive angles. As can be seen in figure 21, the dipole shower

predicts these characteristics, providing fairly good evidence that colour-coherence effects

are reasonably modelled. The agreement with data deteriorates once the prediction is taken

from a dipole shower where the ŝmax setting has been (considerably) reduced. This again

emphasizes that the natural choice is to assign the full phase space to single emissions by

using the default ŝmax settings.

Exclusive three-jet final-state challenge. Recent CDF measurements have found

an excess in data of exclusive three-jet events with small ∆R23, which is not described

by available tools, such as Pythia (Tune A) [102, 103]. In a first qualitative study the

potential of the new dipole shower to predict ∆R23 differently w.r.t. traditional leading-log

showers is estimated. Therefore, the following analysis has been applied:

• Require jet reconstruction according to the cone jet algorithm, use R = 0.4,

• use general cuts on jets of pT,i > 20 GeV and |ηi| < 2.5,

• additionally, use |η1| < 1.0 for the hardest jet, and,

• consider the trigger-jet effect, i.e. demand pT,1 > 40 GeV.

quark-gluon dipoles (discussed in section 4.2 ff) require more serious investigation in this direction. The

comparison with the CDF data is just a first step.
21For the same reason, in the study of [36] ∆R23 has not been taken into account either.
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Figure 22: Pseudo-rapidity distribution of the third jet and spatial separation between the second

and third jet in exclusive three-jet final states simulated for Tevatron Run II energies. The plots are

obtained requiring a larger jet pT threshold for the hardest jet to pass. The Sherpa shower predic-

tion generated by Apacic++ in CKKW scale-scheme mode (black dashed curves) is compared to

the dipole-shower predictions, namely for default (blue solid curves) and lowered initializing scales

(red dashed curves).

The results are presented in figure 22 and show the pseudo-rapidity spectrum of the

third jet together with the ∆R23 distribution mentioned before. Concerning the former, the

dipole-shower variants are found to generate steeper spectra, while inspecting the latter,

the shower starting from the lower initializing scale prefers populating the region of small

jet separations the most. The Apacic++ prediction rises towards smaller separations as

well but stays below the dipole shower curves and features a broader tail. Additionally,

by relaxing the pT,1 > 40 requirement, treating all jets likewise, the higher pT,1 threshold

was identified as a major source in projecting out the peak for low ∆R23. The different

behaviour of the dipole and parton shower eventually can be seen as a consequence of gen-

erating the full radiation pattern differently. For example, recalling that the p2
⊥ definition

includes a product of two-parton squared masses s12s23, a small s12 with a potentially small

angle between parton 1 and 2 can still be compensated by a large s23 giving the same p2
⊥.

In a 1 → 2 splitting usually there is no such freedom of compensating a small s12, it might

be rather cut away by the parton-shower cut-off. In conclusion, the tendency of the dipole

shower to enhance the production of spatially less separated jets should be studied in more

detail and more realistically including underlying event simulation etc. and, possibly, a

direct comparison to data.

9. Conclusions

In this publication, the colour-dipole shower approach based on the Lund Colour Dipole

Model [16, 8] has been extended. In this model, the description of sequences of QCD
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emissions is formulated in an expansion around their soft limit. In the context of hadronic

collisions, a novel, perturbative description of initial-state showering based on the emis-

sion properties of colour dipoles has been developed, which is in clear contrast to the

corresponding Lund ansatz. In summary, initial-state radiation is treated directly and

not redefined by final-state radiation arising from final-state dipoles that contain extended

colour sources, which, therefore, are subject of a semi-classically motivated suppression of

high p⊥ emissions. In contrast, in the new model the hadron remnants are completely kept

outside the evolution. The fully perturbative treatment led to the introduction of new

dipole types, which contain incoming partons.

The description of gluon emissions off colour dipoles has been generalized to account for

all kinematic regions appearing in hadronic collisions. It centers around a Lorentz invariant

generalization of the definition of the dipole evolution variables. Splitting functions have

been derived for the new dipole types. Together with the well-known radiation pattern of

pure final-state colour dipoles, their utilization in a complete shower algorithm has been

presented to describe soft and collinear multiple parton emission. The feasibility of the

approach has been shown through its successful application to electron-positron annihila-

tion into hadrons, inclusive Drell-Yan pair production and inclusive QCD jet production at

hadron colliders. All comparisons deliver encouraging results in good agreement with other

models and with experimental data. It is worth to mention that the feature of generating

broader pseudo-rapidity spectra — often mentioned in connection with colour-dipole evo-

lution according to Ariadne — has not been confirmed by the new model. Moreover, for

the first time, results have been presented for the inclusive production of jets in hadronic

collisions that have been obtained from a shower based on the colour-dipole approach. First

evidences could be given that the model correctly accounts for colour-coherence effects.

Taken together, an appealing picture of dipole cascading has been achieved. Future

work will concern the full incorporation of gluon splittings in the initial and final state, and,

the generalization to finite quark masses. In addition, a merging with multi-leg tree-level

matrix elements for additional QCD radiation will be addressed, and, a matching with full

NLO QCD calculations shall be studied.
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[5] T. Sjöstrand, S. Mrenna and P. Skands, Pythia 6.4: physics and manual, JHEP 05 (2006)

026 [hep-ph/0603175].

[6] G. Corcella et al., Herwig 6: an event generator for hadron emission reactions with

interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010

[hep-ph/0011363].

[7] G. Corcella et al., Herwig 6.5 release note, hep-ph/0210213.
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